Global climate-oriented transportation scenarios

This paper develops scenarios whereby CO2 emissions from the transportation sector are eliminated worldwide by the end of this century. Data concerning the energy intensity and utilization of different passenger and freight transportation modes in 2005, and per capita income, in 10 different socio-e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy policy 2013-03, Vol.54, p.87-103
1. Verfasser: Harvey, L.D.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103
container_issue
container_start_page 87
container_title Energy policy
container_volume 54
creator Harvey, L.D.D.
description This paper develops scenarios whereby CO2 emissions from the transportation sector are eliminated worldwide by the end of this century. Data concerning the energy intensity and utilization of different passenger and freight transportation modes in 2005, and per capita income, in 10 different socio-economic regions of the world are combined with scenarios of population and per capita GDP to generate scenarios of future transportation energy demand. The impact of various technical options (improvements in the energy intensity of all transportation modes, changes in the proportions of vehicles with different drive trains, and a shift to biomass or hydrogen for the non-electricity energy requirements) and behavioural options (a shift to less energy-intensive LDV market segments, a reduction in total passenger-km of travel per capita, and an increase in the share of less energy-intensive passenger and freight modes of transport) is assessed. To eliminate transportation fossil fuel emissions within this century while limiting the demand for electricity, biofuels or hydrogen to manageable levels requires the simultaneous application of all the technical and behavioural measures considered here, with improvements in vehicle efficiencies and a shift to plug-in hybrid and battery-electric drive trains for light duty vehicles being the most important measures. ► Scenarios are developed whereby transportation CO2 emissions reach zero by 2100. ► These scenarios address concerns about peak oil and global warming. ► A comprehensive mix of technical and behavioural changes is considered in 10 world regions. ► Efficiency improvements and a shift to plug-in hybrid vehicles are the most important measures.
doi_str_mv 10.1016/j.enpol.2012.10.053
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671401244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030142151200938X</els_id><sourcerecordid>1323247456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-f9a6362b02a518831c302bd250de0f464b4c8887e87fbb213758d77f72dca6ac3</originalsourceid><addsrcrecordid>eNqNkcFKJDEQhoO44Di7T-DBARG89GxVkk4yBw8iOgrCHnY9h3Q6LRnazpj0CPv21jjiwYN6Kii--qmqj7EjhDkCqt-reRjWqZ9zQE6dOdRij03QaFEprfU-m4AArCTH-oAdlrICAGkWcsJg2afG9TPfx0c3hirlGIYxtLMxu6GsUx7dGNMwKz4MLsdUfrIfnetL-PVWp-z--urf5U1192d5e3lxV_ka9Vh1C6eE4g1wV6MxAr0A3rS8hjZAJ5VspDfG6GB01zQcha5Nq3Wneeudcl5M2dkud53T0yaU0T5GWqLv3RDSplhUGiWdK-XXqFBScw1GfQPlgkst6y168gFdpU0e6GaL3EiJBoUhSuwon1MpOXR2nemT-b9FsFs3dmVf3ditm22T3NDU6Vu2K971Hf3ax_I-SrtyswAg7njHdS5Z95CJuf9LQYr8aa4oasrOd0QgF88xZFs8GfShjTn40bYpfrrJCxCNq-Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1284418138</pqid></control><display><type>article</type><title>Global climate-oriented transportation scenarios</title><source>Elsevier ScienceDirect Journals Complete</source><source>PAIS Index</source><creator>Harvey, L.D.D.</creator><creatorcontrib>Harvey, L.D.D.</creatorcontrib><description>This paper develops scenarios whereby CO2 emissions from the transportation sector are eliminated worldwide by the end of this century. Data concerning the energy intensity and utilization of different passenger and freight transportation modes in 2005, and per capita income, in 10 different socio-economic regions of the world are combined with scenarios of population and per capita GDP to generate scenarios of future transportation energy demand. The impact of various technical options (improvements in the energy intensity of all transportation modes, changes in the proportions of vehicles with different drive trains, and a shift to biomass or hydrogen for the non-electricity energy requirements) and behavioural options (a shift to less energy-intensive LDV market segments, a reduction in total passenger-km of travel per capita, and an increase in the share of less energy-intensive passenger and freight modes of transport) is assessed. To eliminate transportation fossil fuel emissions within this century while limiting the demand for electricity, biofuels or hydrogen to manageable levels requires the simultaneous application of all the technical and behavioural measures considered here, with improvements in vehicle efficiencies and a shift to plug-in hybrid and battery-electric drive trains for light duty vehicles being the most important measures. ► Scenarios are developed whereby transportation CO2 emissions reach zero by 2100. ► These scenarios address concerns about peak oil and global warming. ► A comprehensive mix of technical and behavioural changes is considered in 10 world regions. ► Efficiency improvements and a shift to plug-in hybrid vehicles are the most important measures.</description><identifier>ISSN: 0301-4215</identifier><identifier>EISSN: 1873-6777</identifier><identifier>DOI: 10.1016/j.enpol.2012.10.053</identifier><identifier>CODEN: ENPYAC</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Air pollution caused by fuel industries ; Alternative fuel vehicles ; Applied sciences ; Behavioural ; biofuels ; biomass ; Biomass energy ; carbon dioxide ; Demand ; Electric power ; electricity ; Emissions control ; Energy ; Energy economics ; Energy policy ; energy requirements ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fossil fuels ; freight ; Fuel economy standards ; GDP ; General, economic and professional studies ; General. Regulations. Norms. Economy ; greenhouse gas emissions ; Gross Domestic Product ; Ground, air and sea transportation, marine construction ; Hydrogen ; Hydrogen storage ; Income ; Marketing ; Markets ; mechanical drives ; Metering. Control ; Passengers ; Per capita ; per-capita income ; Population ; Scenarios ; socioeconomics ; Studies ; Trains ; Transportation ; Transportation industry ; Transportation planning, management and economics ; Travel</subject><ispartof>Energy policy, 2013-03, Vol.54, p.87-103</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Elsevier Science Ltd. Mar 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-f9a6362b02a518831c302bd250de0f464b4c8887e87fbb213758d77f72dca6ac3</citedby><cites>FETCH-LOGICAL-c517t-f9a6362b02a518831c302bd250de0f464b4c8887e87fbb213758d77f72dca6ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enpol.2012.10.053$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27863,27864,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27028900$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Harvey, L.D.D.</creatorcontrib><title>Global climate-oriented transportation scenarios</title><title>Energy policy</title><description>This paper develops scenarios whereby CO2 emissions from the transportation sector are eliminated worldwide by the end of this century. Data concerning the energy intensity and utilization of different passenger and freight transportation modes in 2005, and per capita income, in 10 different socio-economic regions of the world are combined with scenarios of population and per capita GDP to generate scenarios of future transportation energy demand. The impact of various technical options (improvements in the energy intensity of all transportation modes, changes in the proportions of vehicles with different drive trains, and a shift to biomass or hydrogen for the non-electricity energy requirements) and behavioural options (a shift to less energy-intensive LDV market segments, a reduction in total passenger-km of travel per capita, and an increase in the share of less energy-intensive passenger and freight modes of transport) is assessed. To eliminate transportation fossil fuel emissions within this century while limiting the demand for electricity, biofuels or hydrogen to manageable levels requires the simultaneous application of all the technical and behavioural measures considered here, with improvements in vehicle efficiencies and a shift to plug-in hybrid and battery-electric drive trains for light duty vehicles being the most important measures. ► Scenarios are developed whereby transportation CO2 emissions reach zero by 2100. ► These scenarios address concerns about peak oil and global warming. ► A comprehensive mix of technical and behavioural changes is considered in 10 world regions. ► Efficiency improvements and a shift to plug-in hybrid vehicles are the most important measures.</description><subject>Air pollution caused by fuel industries</subject><subject>Alternative fuel vehicles</subject><subject>Applied sciences</subject><subject>Behavioural</subject><subject>biofuels</subject><subject>biomass</subject><subject>Biomass energy</subject><subject>carbon dioxide</subject><subject>Demand</subject><subject>Electric power</subject><subject>electricity</subject><subject>Emissions control</subject><subject>Energy</subject><subject>Energy economics</subject><subject>Energy policy</subject><subject>energy requirements</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fossil fuels</subject><subject>freight</subject><subject>Fuel economy standards</subject><subject>GDP</subject><subject>General, economic and professional studies</subject><subject>General. Regulations. Norms. Economy</subject><subject>greenhouse gas emissions</subject><subject>Gross Domestic Product</subject><subject>Ground, air and sea transportation, marine construction</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Income</subject><subject>Marketing</subject><subject>Markets</subject><subject>mechanical drives</subject><subject>Metering. Control</subject><subject>Passengers</subject><subject>Per capita</subject><subject>per-capita income</subject><subject>Population</subject><subject>Scenarios</subject><subject>socioeconomics</subject><subject>Studies</subject><subject>Trains</subject><subject>Transportation</subject><subject>Transportation industry</subject><subject>Transportation planning, management and economics</subject><subject>Travel</subject><issn>0301-4215</issn><issn>1873-6777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><recordid>eNqNkcFKJDEQhoO44Di7T-DBARG89GxVkk4yBw8iOgrCHnY9h3Q6LRnazpj0CPv21jjiwYN6Kii--qmqj7EjhDkCqt-reRjWqZ9zQE6dOdRij03QaFEprfU-m4AArCTH-oAdlrICAGkWcsJg2afG9TPfx0c3hirlGIYxtLMxu6GsUx7dGNMwKz4MLsdUfrIfnetL-PVWp-z--urf5U1192d5e3lxV_ka9Vh1C6eE4g1wV6MxAr0A3rS8hjZAJ5VspDfG6GB01zQcha5Nq3Wneeudcl5M2dkud53T0yaU0T5GWqLv3RDSplhUGiWdK-XXqFBScw1GfQPlgkst6y168gFdpU0e6GaL3EiJBoUhSuwon1MpOXR2nemT-b9FsFs3dmVf3ditm22T3NDU6Vu2K971Hf3ax_I-SrtyswAg7njHdS5Z95CJuf9LQYr8aa4oasrOd0QgF88xZFs8GfShjTn40bYpfrrJCxCNq-Y</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Harvey, L.D.D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Science Ltd</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TA</scope><scope>7TB</scope><scope>7TQ</scope><scope>8BJ</scope><scope>8FD</scope><scope>DHY</scope><scope>DON</scope><scope>F28</scope><scope>FQK</scope><scope>FR3</scope><scope>H8D</scope><scope>JBE</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SU</scope></search><sort><creationdate>20130301</creationdate><title>Global climate-oriented transportation scenarios</title><author>Harvey, L.D.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-f9a6362b02a518831c302bd250de0f464b4c8887e87fbb213758d77f72dca6ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Air pollution caused by fuel industries</topic><topic>Alternative fuel vehicles</topic><topic>Applied sciences</topic><topic>Behavioural</topic><topic>biofuels</topic><topic>biomass</topic><topic>Biomass energy</topic><topic>carbon dioxide</topic><topic>Demand</topic><topic>Electric power</topic><topic>electricity</topic><topic>Emissions control</topic><topic>Energy</topic><topic>Energy economics</topic><topic>Energy policy</topic><topic>energy requirements</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fossil fuels</topic><topic>freight</topic><topic>Fuel economy standards</topic><topic>GDP</topic><topic>General, economic and professional studies</topic><topic>General. Regulations. Norms. Economy</topic><topic>greenhouse gas emissions</topic><topic>Gross Domestic Product</topic><topic>Ground, air and sea transportation, marine construction</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Income</topic><topic>Marketing</topic><topic>Markets</topic><topic>mechanical drives</topic><topic>Metering. Control</topic><topic>Passengers</topic><topic>Per capita</topic><topic>per-capita income</topic><topic>Population</topic><topic>Scenarios</topic><topic>socioeconomics</topic><topic>Studies</topic><topic>Trains</topic><topic>Transportation</topic><topic>Transportation industry</topic><topic>Transportation planning, management and economics</topic><topic>Travel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harvey, L.D.D.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>PAIS Index</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>International Bibliography of the Social Sciences</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><jtitle>Energy policy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harvey, L.D.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global climate-oriented transportation scenarios</atitle><jtitle>Energy policy</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>54</volume><spage>87</spage><epage>103</epage><pages>87-103</pages><issn>0301-4215</issn><eissn>1873-6777</eissn><coden>ENPYAC</coden><abstract>This paper develops scenarios whereby CO2 emissions from the transportation sector are eliminated worldwide by the end of this century. Data concerning the energy intensity and utilization of different passenger and freight transportation modes in 2005, and per capita income, in 10 different socio-economic regions of the world are combined with scenarios of population and per capita GDP to generate scenarios of future transportation energy demand. The impact of various technical options (improvements in the energy intensity of all transportation modes, changes in the proportions of vehicles with different drive trains, and a shift to biomass or hydrogen for the non-electricity energy requirements) and behavioural options (a shift to less energy-intensive LDV market segments, a reduction in total passenger-km of travel per capita, and an increase in the share of less energy-intensive passenger and freight modes of transport) is assessed. To eliminate transportation fossil fuel emissions within this century while limiting the demand for electricity, biofuels or hydrogen to manageable levels requires the simultaneous application of all the technical and behavioural measures considered here, with improvements in vehicle efficiencies and a shift to plug-in hybrid and battery-electric drive trains for light duty vehicles being the most important measures. ► Scenarios are developed whereby transportation CO2 emissions reach zero by 2100. ► These scenarios address concerns about peak oil and global warming. ► A comprehensive mix of technical and behavioural changes is considered in 10 world regions. ► Efficiency improvements and a shift to plug-in hybrid vehicles are the most important measures.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enpol.2012.10.053</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0301-4215
ispartof Energy policy, 2013-03, Vol.54, p.87-103
issn 0301-4215
1873-6777
language eng
recordid cdi_proquest_miscellaneous_1671401244
source Elsevier ScienceDirect Journals Complete; PAIS Index
subjects Air pollution caused by fuel industries
Alternative fuel vehicles
Applied sciences
Behavioural
biofuels
biomass
Biomass energy
carbon dioxide
Demand
Electric power
electricity
Emissions control
Energy
Energy economics
Energy policy
energy requirements
Energy. Thermal use of fuels
Exact sciences and technology
Fossil fuels
freight
Fuel economy standards
GDP
General, economic and professional studies
General. Regulations. Norms. Economy
greenhouse gas emissions
Gross Domestic Product
Ground, air and sea transportation, marine construction
Hydrogen
Hydrogen storage
Income
Marketing
Markets
mechanical drives
Metering. Control
Passengers
Per capita
per-capita income
Population
Scenarios
socioeconomics
Studies
Trains
Transportation
Transportation industry
Transportation planning, management and economics
Travel
title Global climate-oriented transportation scenarios
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A38%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20climate-oriented%20transportation%20scenarios&rft.jtitle=Energy%20policy&rft.au=Harvey,%20L.D.D.&rft.date=2013-03-01&rft.volume=54&rft.spage=87&rft.epage=103&rft.pages=87-103&rft.issn=0301-4215&rft.eissn=1873-6777&rft.coden=ENPYAC&rft_id=info:doi/10.1016/j.enpol.2012.10.053&rft_dat=%3Cproquest_cross%3E1323247456%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1284418138&rft_id=info:pmid/&rft_els_id=S030142151200938X&rfr_iscdi=true