Inference for a class of partially observed point process models

This paper presents a simulation-based framework for sequential inference from partially and discretely observed point process models with static parameters. Taking on a Bayesian perspective for the static parameters, we build upon sequential Monte Carlo methods, investigating the problems of perfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the Institute of Statistical Mathematics 2013-06, Vol.65 (3), p.413-437
Hauptverfasser: Martin, James S., Jasra, Ajay, McCoy, Emma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 437
container_issue 3
container_start_page 413
container_title Annals of the Institute of Statistical Mathematics
container_volume 65
creator Martin, James S.
Jasra, Ajay
McCoy, Emma
description This paper presents a simulation-based framework for sequential inference from partially and discretely observed point process models with static parameters. Taking on a Bayesian perspective for the static parameters, we build upon sequential Monte Carlo methods, investigating the problems of performing sequential filtering and smoothing in complex examples, where current methods often fail. We consider various approaches for approximating posterior distributions using SMC. Our approaches, with some theoretical discussion are illustrated on a doubly stochastic point process applied in the context of finance.
doi_str_mv 10.1007/s10463-012-0375-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671400195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671400195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-d958684d1b896ce0ad579909a1ffe3a2091a59480a414c9ab7c0fb4c28aa62cd3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouH78AG8BL16ik6Rpkpuy-LGw4EXPIU0T6dJtatIV9t-bpR5E8DQwPO87w4PQFYVbCiDvMoWq5gQoI8ClIOoILaiQjGgQ7BgtABgQXjan6CznDQBwxtkC3a-G4JMfnMchJmyx623OOAY82jR1tu_3ODbZpy_f4jF2w4THFJ0vzDa2vs8X6CTYPvvLn3mO3p8e35YvZP36vFo-rInjsp5Iq4WqVdXSRunaebCtkFqDtjQEzy0DTa3QlQJb0cpp20gHoakcU9bWzLX8HN3MveX8587nyWy77Hzf28HHXTa0lrQCoFoU9PoPuom7NJTvDOVCcFYOy0LRmXIp5px8MGPqtjbtDQVzcGpmp6Y4NQenRpUMmzO5sMOHT7-a_w19AzKueC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1355329907</pqid></control><display><type>article</type><title>Inference for a class of partially observed point process models</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Martin, James S. ; Jasra, Ajay ; McCoy, Emma</creator><creatorcontrib>Martin, James S. ; Jasra, Ajay ; McCoy, Emma</creatorcontrib><description>This paper presents a simulation-based framework for sequential inference from partially and discretely observed point process models with static parameters. Taking on a Bayesian perspective for the static parameters, we build upon sequential Monte Carlo methods, investigating the problems of performing sequential filtering and smoothing in complex examples, where current methods often fail. We consider various approaches for approximating posterior distributions using SMC. Our approaches, with some theoretical discussion are illustrated on a doubly stochastic point process applied in the context of finance.</description><identifier>ISSN: 0020-3157</identifier><identifier>EISSN: 1572-9052</identifier><identifier>DOI: 10.1007/s10463-012-0375-8</identifier><language>eng</language><publisher>Japan: Springer Japan</publisher><subject>Algorithms ; Approximation ; Computer simulation ; Construction ; Economics ; Estimating techniques ; Filtering ; Filtration ; Finance ; Inference ; Insurance ; Management ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Monte Carlo simulation ; Statistics ; Statistics for Business ; Studies</subject><ispartof>Annals of the Institute of Statistical Mathematics, 2013-06, Vol.65 (3), p.413-437</ispartof><rights>The Institute of Statistical Mathematics, Tokyo 2012</rights><rights>The Institute of Statistical Mathematics, Tokyo 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-d958684d1b896ce0ad579909a1ffe3a2091a59480a414c9ab7c0fb4c28aa62cd3</citedby><cites>FETCH-LOGICAL-c376t-d958684d1b896ce0ad579909a1ffe3a2091a59480a414c9ab7c0fb4c28aa62cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10463-012-0375-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10463-012-0375-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Martin, James S.</creatorcontrib><creatorcontrib>Jasra, Ajay</creatorcontrib><creatorcontrib>McCoy, Emma</creatorcontrib><title>Inference for a class of partially observed point process models</title><title>Annals of the Institute of Statistical Mathematics</title><addtitle>Ann Inst Stat Math</addtitle><description>This paper presents a simulation-based framework for sequential inference from partially and discretely observed point process models with static parameters. Taking on a Bayesian perspective for the static parameters, we build upon sequential Monte Carlo methods, investigating the problems of performing sequential filtering and smoothing in complex examples, where current methods often fail. We consider various approaches for approximating posterior distributions using SMC. Our approaches, with some theoretical discussion are illustrated on a doubly stochastic point process applied in the context of finance.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Computer simulation</subject><subject>Construction</subject><subject>Economics</subject><subject>Estimating techniques</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Finance</subject><subject>Inference</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Monte Carlo simulation</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Studies</subject><issn>0020-3157</issn><issn>1572-9052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LxDAQhoMouH78AG8BL16ik6Rpkpuy-LGw4EXPIU0T6dJtatIV9t-bpR5E8DQwPO87w4PQFYVbCiDvMoWq5gQoI8ClIOoILaiQjGgQ7BgtABgQXjan6CznDQBwxtkC3a-G4JMfnMchJmyx623OOAY82jR1tu_3ODbZpy_f4jF2w4THFJ0vzDa2vs8X6CTYPvvLn3mO3p8e35YvZP36vFo-rInjsp5Iq4WqVdXSRunaebCtkFqDtjQEzy0DTa3QlQJb0cpp20gHoakcU9bWzLX8HN3MveX8587nyWy77Hzf28HHXTa0lrQCoFoU9PoPuom7NJTvDOVCcFYOy0LRmXIp5px8MGPqtjbtDQVzcGpmp6Y4NQenRpUMmzO5sMOHT7-a_w19AzKueC4</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Martin, James S.</creator><creator>Jasra, Ajay</creator><creator>McCoy, Emma</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20130601</creationdate><title>Inference for a class of partially observed point process models</title><author>Martin, James S. ; Jasra, Ajay ; McCoy, Emma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-d958684d1b896ce0ad579909a1ffe3a2091a59480a414c9ab7c0fb4c28aa62cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Computer simulation</topic><topic>Construction</topic><topic>Economics</topic><topic>Estimating techniques</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Finance</topic><topic>Inference</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Monte Carlo simulation</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, James S.</creatorcontrib><creatorcontrib>Jasra, Ajay</creatorcontrib><creatorcontrib>McCoy, Emma</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of the Institute of Statistical Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, James S.</au><au>Jasra, Ajay</au><au>McCoy, Emma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inference for a class of partially observed point process models</atitle><jtitle>Annals of the Institute of Statistical Mathematics</jtitle><stitle>Ann Inst Stat Math</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>65</volume><issue>3</issue><spage>413</spage><epage>437</epage><pages>413-437</pages><issn>0020-3157</issn><eissn>1572-9052</eissn><abstract>This paper presents a simulation-based framework for sequential inference from partially and discretely observed point process models with static parameters. Taking on a Bayesian perspective for the static parameters, we build upon sequential Monte Carlo methods, investigating the problems of performing sequential filtering and smoothing in complex examples, where current methods often fail. We consider various approaches for approximating posterior distributions using SMC. Our approaches, with some theoretical discussion are illustrated on a doubly stochastic point process applied in the context of finance.</abstract><cop>Japan</cop><pub>Springer Japan</pub><doi>10.1007/s10463-012-0375-8</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-3157
ispartof Annals of the Institute of Statistical Mathematics, 2013-06, Vol.65 (3), p.413-437
issn 0020-3157
1572-9052
language eng
recordid cdi_proquest_miscellaneous_1671400195
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerLink Journals - AutoHoldings
subjects Algorithms
Approximation
Computer simulation
Construction
Economics
Estimating techniques
Filtering
Filtration
Finance
Inference
Insurance
Management
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Monte Carlo simulation
Statistics
Statistics for Business
Studies
title Inference for a class of partially observed point process models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A52%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inference%20for%20a%20class%20of%20partially%20observed%20point%20process%20models&rft.jtitle=Annals%20of%20the%20Institute%20of%20Statistical%20Mathematics&rft.au=Martin,%20James%20S.&rft.date=2013-06-01&rft.volume=65&rft.issue=3&rft.spage=413&rft.epage=437&rft.pages=413-437&rft.issn=0020-3157&rft.eissn=1572-9052&rft_id=info:doi/10.1007/s10463-012-0375-8&rft_dat=%3Cproquest_cross%3E1671400195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1355329907&rft_id=info:pmid/&rfr_iscdi=true