Inference for a class of partially observed point process models
This paper presents a simulation-based framework for sequential inference from partially and discretely observed point process models with static parameters. Taking on a Bayesian perspective for the static parameters, we build upon sequential Monte Carlo methods, investigating the problems of perfor...
Gespeichert in:
Veröffentlicht in: | Annals of the Institute of Statistical Mathematics 2013-06, Vol.65 (3), p.413-437 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 437 |
---|---|
container_issue | 3 |
container_start_page | 413 |
container_title | Annals of the Institute of Statistical Mathematics |
container_volume | 65 |
creator | Martin, James S. Jasra, Ajay McCoy, Emma |
description | This paper presents a simulation-based framework for sequential inference from partially and discretely observed point process models with static parameters. Taking on a Bayesian perspective for the static parameters, we build upon sequential Monte Carlo methods, investigating the problems of performing sequential filtering and smoothing in complex examples, where current methods often fail. We consider various approaches for approximating posterior distributions using SMC. Our approaches, with some theoretical discussion are illustrated on a doubly stochastic point process applied in the context of finance. |
doi_str_mv | 10.1007/s10463-012-0375-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671400195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671400195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-d958684d1b896ce0ad579909a1ffe3a2091a59480a414c9ab7c0fb4c28aa62cd3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouH78AG8BL16ik6Rpkpuy-LGw4EXPIU0T6dJtatIV9t-bpR5E8DQwPO87w4PQFYVbCiDvMoWq5gQoI8ClIOoILaiQjGgQ7BgtABgQXjan6CznDQBwxtkC3a-G4JMfnMchJmyx623OOAY82jR1tu_3ODbZpy_f4jF2w4THFJ0vzDa2vs8X6CTYPvvLn3mO3p8e35YvZP36vFo-rInjsp5Iq4WqVdXSRunaebCtkFqDtjQEzy0DTa3QlQJb0cpp20gHoakcU9bWzLX8HN3MveX8587nyWy77Hzf28HHXTa0lrQCoFoU9PoPuom7NJTvDOVCcFYOy0LRmXIp5px8MGPqtjbtDQVzcGpmp6Y4NQenRpUMmzO5sMOHT7-a_w19AzKueC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1355329907</pqid></control><display><type>article</type><title>Inference for a class of partially observed point process models</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Martin, James S. ; Jasra, Ajay ; McCoy, Emma</creator><creatorcontrib>Martin, James S. ; Jasra, Ajay ; McCoy, Emma</creatorcontrib><description>This paper presents a simulation-based framework for sequential inference from partially and discretely observed point process models with static parameters. Taking on a Bayesian perspective for the static parameters, we build upon sequential Monte Carlo methods, investigating the problems of performing sequential filtering and smoothing in complex examples, where current methods often fail. We consider various approaches for approximating posterior distributions using SMC. Our approaches, with some theoretical discussion are illustrated on a doubly stochastic point process applied in the context of finance.</description><identifier>ISSN: 0020-3157</identifier><identifier>EISSN: 1572-9052</identifier><identifier>DOI: 10.1007/s10463-012-0375-8</identifier><language>eng</language><publisher>Japan: Springer Japan</publisher><subject>Algorithms ; Approximation ; Computer simulation ; Construction ; Economics ; Estimating techniques ; Filtering ; Filtration ; Finance ; Inference ; Insurance ; Management ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Monte Carlo simulation ; Statistics ; Statistics for Business ; Studies</subject><ispartof>Annals of the Institute of Statistical Mathematics, 2013-06, Vol.65 (3), p.413-437</ispartof><rights>The Institute of Statistical Mathematics, Tokyo 2012</rights><rights>The Institute of Statistical Mathematics, Tokyo 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-d958684d1b896ce0ad579909a1ffe3a2091a59480a414c9ab7c0fb4c28aa62cd3</citedby><cites>FETCH-LOGICAL-c376t-d958684d1b896ce0ad579909a1ffe3a2091a59480a414c9ab7c0fb4c28aa62cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10463-012-0375-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10463-012-0375-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Martin, James S.</creatorcontrib><creatorcontrib>Jasra, Ajay</creatorcontrib><creatorcontrib>McCoy, Emma</creatorcontrib><title>Inference for a class of partially observed point process models</title><title>Annals of the Institute of Statistical Mathematics</title><addtitle>Ann Inst Stat Math</addtitle><description>This paper presents a simulation-based framework for sequential inference from partially and discretely observed point process models with static parameters. Taking on a Bayesian perspective for the static parameters, we build upon sequential Monte Carlo methods, investigating the problems of performing sequential filtering and smoothing in complex examples, where current methods often fail. We consider various approaches for approximating posterior distributions using SMC. Our approaches, with some theoretical discussion are illustrated on a doubly stochastic point process applied in the context of finance.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Computer simulation</subject><subject>Construction</subject><subject>Economics</subject><subject>Estimating techniques</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Finance</subject><subject>Inference</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Monte Carlo simulation</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Studies</subject><issn>0020-3157</issn><issn>1572-9052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LxDAQhoMouH78AG8BL16ik6Rpkpuy-LGw4EXPIU0T6dJtatIV9t-bpR5E8DQwPO87w4PQFYVbCiDvMoWq5gQoI8ClIOoILaiQjGgQ7BgtABgQXjan6CznDQBwxtkC3a-G4JMfnMchJmyx623OOAY82jR1tu_3ODbZpy_f4jF2w4THFJ0vzDa2vs8X6CTYPvvLn3mO3p8e35YvZP36vFo-rInjsp5Iq4WqVdXSRunaebCtkFqDtjQEzy0DTa3QlQJb0cpp20gHoakcU9bWzLX8HN3MveX8587nyWy77Hzf28HHXTa0lrQCoFoU9PoPuom7NJTvDOVCcFYOy0LRmXIp5px8MGPqtjbtDQVzcGpmp6Y4NQenRpUMmzO5sMOHT7-a_w19AzKueC4</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Martin, James S.</creator><creator>Jasra, Ajay</creator><creator>McCoy, Emma</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20130601</creationdate><title>Inference for a class of partially observed point process models</title><author>Martin, James S. ; Jasra, Ajay ; McCoy, Emma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-d958684d1b896ce0ad579909a1ffe3a2091a59480a414c9ab7c0fb4c28aa62cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Computer simulation</topic><topic>Construction</topic><topic>Economics</topic><topic>Estimating techniques</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Finance</topic><topic>Inference</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Monte Carlo simulation</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, James S.</creatorcontrib><creatorcontrib>Jasra, Ajay</creatorcontrib><creatorcontrib>McCoy, Emma</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of the Institute of Statistical Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, James S.</au><au>Jasra, Ajay</au><au>McCoy, Emma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inference for a class of partially observed point process models</atitle><jtitle>Annals of the Institute of Statistical Mathematics</jtitle><stitle>Ann Inst Stat Math</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>65</volume><issue>3</issue><spage>413</spage><epage>437</epage><pages>413-437</pages><issn>0020-3157</issn><eissn>1572-9052</eissn><abstract>This paper presents a simulation-based framework for sequential inference from partially and discretely observed point process models with static parameters. Taking on a Bayesian perspective for the static parameters, we build upon sequential Monte Carlo methods, investigating the problems of performing sequential filtering and smoothing in complex examples, where current methods often fail. We consider various approaches for approximating posterior distributions using SMC. Our approaches, with some theoretical discussion are illustrated on a doubly stochastic point process applied in the context of finance.</abstract><cop>Japan</cop><pub>Springer Japan</pub><doi>10.1007/s10463-012-0375-8</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-3157 |
ispartof | Annals of the Institute of Statistical Mathematics, 2013-06, Vol.65 (3), p.413-437 |
issn | 0020-3157 1572-9052 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671400195 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerLink Journals - AutoHoldings |
subjects | Algorithms Approximation Computer simulation Construction Economics Estimating techniques Filtering Filtration Finance Inference Insurance Management Mathematical analysis Mathematical models Mathematics Mathematics and Statistics Monte Carlo simulation Statistics Statistics for Business Studies |
title | Inference for a class of partially observed point process models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A52%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inference%20for%20a%20class%20of%20partially%20observed%20point%20process%20models&rft.jtitle=Annals%20of%20the%20Institute%20of%20Statistical%20Mathematics&rft.au=Martin,%20James%20S.&rft.date=2013-06-01&rft.volume=65&rft.issue=3&rft.spage=413&rft.epage=437&rft.pages=413-437&rft.issn=0020-3157&rft.eissn=1572-9052&rft_id=info:doi/10.1007/s10463-012-0375-8&rft_dat=%3Cproquest_cross%3E1671400195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1355329907&rft_id=info:pmid/&rfr_iscdi=true |