OctoMap: an efficient probabilistic 3D mapping framework based on octrees

Three-dimensional models provide a volumetric representation of space which is important for a variety of robotic applications including flying robots and robots that are equipped with manipulators. In this paper, we present an open-source framework to generate volumetric 3D environment models. Our...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Autonomous robots 2013-04, Vol.34 (3), p.189-206
Hauptverfasser: Hornung, Armin, Wurm, Kai M., Bennewitz, Maren, Stachniss, Cyrill, Burgard, Wolfram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 206
container_issue 3
container_start_page 189
container_title Autonomous robots
container_volume 34
creator Hornung, Armin
Wurm, Kai M.
Bennewitz, Maren
Stachniss, Cyrill
Burgard, Wolfram
description Three-dimensional models provide a volumetric representation of space which is important for a variety of robotic applications including flying robots and robots that are equipped with manipulators. In this paper, we present an open-source framework to generate volumetric 3D environment models. Our mapping approach is based on octrees and uses probabilistic occupancy estimation. It explicitly represents not only occupied space, but also free and unknown areas. Furthermore, we propose an octree map compression method that keeps the 3D models compact. Our framework is available as an open-source C++ library and has already been successfully applied in several robotics projects. We present a series of experimental results carried out with real robots and on publicly available real-world datasets. The results demonstrate that our approach is able to update the representation efficiently and models the data consistently while keeping the memory requirement at a minimum.
doi_str_mv 10.1007/s10514-012-9321-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671400079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933290461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-cd292b10ccb257b7e63297cfff396dccfaee642d6a29f74ff8678c613ce0f0663</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqXwA9gssbAEnu3YrtlQ-apU1AVmy3HsyiWJg50K8e8JCgNCYnrLuVf3HYTOCVwRAHmdCXBSFkBooRglBRygGeGSFZJTeYhmoKgqOFfsGJ3kvAMAJQFmaLWxQ3w2_Q02HXbeBxtcN-A-xcpUoQl5CBazO9yavg_dFvtkWvcR0xuuTHY1jh2OdkjO5VN05E2T3dnPnaPXh_uX5VOx3jyulrfrwpaED4WtqaIVAWsrymUlnWBUSeu9Z0rU1nrjnChpLQxVXpbeL4RcWEGYdeBBCDZHl1PvuPF97_Kg25CtaxrTubjPmghJyvE_qUb04g-6i_vUjes0YZSWpSyBjxSZKJtizsl53afQmvSpCehvuXqSq0e5-luuhjFDp0we2W7r0q_mf0Nfc6V7og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1322447405</pqid></control><display><type>article</type><title>OctoMap: an efficient probabilistic 3D mapping framework based on octrees</title><source>SpringerLink</source><creator>Hornung, Armin ; Wurm, Kai M. ; Bennewitz, Maren ; Stachniss, Cyrill ; Burgard, Wolfram</creator><creatorcontrib>Hornung, Armin ; Wurm, Kai M. ; Bennewitz, Maren ; Stachniss, Cyrill ; Burgard, Wolfram</creatorcontrib><description>Three-dimensional models provide a volumetric representation of space which is important for a variety of robotic applications including flying robots and robots that are equipped with manipulators. In this paper, we present an open-source framework to generate volumetric 3D environment models. Our mapping approach is based on octrees and uses probabilistic occupancy estimation. It explicitly represents not only occupied space, but also free and unknown areas. Furthermore, we propose an octree map compression method that keeps the 3D models compact. Our framework is available as an open-source C++ library and has already been successfully applied in several robotics projects. We present a series of experimental results carried out with real robots and on publicly available real-world datasets. The results demonstrate that our approach is able to update the representation efficiently and models the data consistently while keeping the memory requirement at a minimum.</description><identifier>ISSN: 0929-5593</identifier><identifier>EISSN: 1573-7527</identifier><identifier>DOI: 10.1007/s10514-012-9321-0</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Artificial Intelligence ; Computer Imaging ; Control ; Engineering ; Environment models ; Freeware ; Mapping ; Mechatronics ; Occupancy ; Octrees ; Pattern Recognition and Graphics ; Probability theory ; Representations ; Robot arms ; Robotics ; Robotics and Automation ; Robots ; Source code ; Three dimensional models ; Vision</subject><ispartof>Autonomous robots, 2013-04, Vol.34 (3), p.189-206</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Autonomous Robots is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-cd292b10ccb257b7e63297cfff396dccfaee642d6a29f74ff8678c613ce0f0663</citedby><cites>FETCH-LOGICAL-c415t-cd292b10ccb257b7e63297cfff396dccfaee642d6a29f74ff8678c613ce0f0663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10514-012-9321-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10514-012-9321-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hornung, Armin</creatorcontrib><creatorcontrib>Wurm, Kai M.</creatorcontrib><creatorcontrib>Bennewitz, Maren</creatorcontrib><creatorcontrib>Stachniss, Cyrill</creatorcontrib><creatorcontrib>Burgard, Wolfram</creatorcontrib><title>OctoMap: an efficient probabilistic 3D mapping framework based on octrees</title><title>Autonomous robots</title><addtitle>Auton Robot</addtitle><description>Three-dimensional models provide a volumetric representation of space which is important for a variety of robotic applications including flying robots and robots that are equipped with manipulators. In this paper, we present an open-source framework to generate volumetric 3D environment models. Our mapping approach is based on octrees and uses probabilistic occupancy estimation. It explicitly represents not only occupied space, but also free and unknown areas. Furthermore, we propose an octree map compression method that keeps the 3D models compact. Our framework is available as an open-source C++ library and has already been successfully applied in several robotics projects. We present a series of experimental results carried out with real robots and on publicly available real-world datasets. The results demonstrate that our approach is able to update the representation efficiently and models the data consistently while keeping the memory requirement at a minimum.</description><subject>Artificial Intelligence</subject><subject>Computer Imaging</subject><subject>Control</subject><subject>Engineering</subject><subject>Environment models</subject><subject>Freeware</subject><subject>Mapping</subject><subject>Mechatronics</subject><subject>Occupancy</subject><subject>Octrees</subject><subject>Pattern Recognition and Graphics</subject><subject>Probability theory</subject><subject>Representations</subject><subject>Robot arms</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Robots</subject><subject>Source code</subject><subject>Three dimensional models</subject><subject>Vision</subject><issn>0929-5593</issn><issn>1573-7527</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kD1PwzAURS0EEqXwA9gssbAEnu3YrtlQ-apU1AVmy3HsyiWJg50K8e8JCgNCYnrLuVf3HYTOCVwRAHmdCXBSFkBooRglBRygGeGSFZJTeYhmoKgqOFfsGJ3kvAMAJQFmaLWxQ3w2_Q02HXbeBxtcN-A-xcpUoQl5CBazO9yavg_dFvtkWvcR0xuuTHY1jh2OdkjO5VN05E2T3dnPnaPXh_uX5VOx3jyulrfrwpaED4WtqaIVAWsrymUlnWBUSeu9Z0rU1nrjnChpLQxVXpbeL4RcWEGYdeBBCDZHl1PvuPF97_Kg25CtaxrTubjPmghJyvE_qUb04g-6i_vUjes0YZSWpSyBjxSZKJtizsl53afQmvSpCehvuXqSq0e5-luuhjFDp0we2W7r0q_mf0Nfc6V7og</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Hornung, Armin</creator><creator>Wurm, Kai M.</creator><creator>Bennewitz, Maren</creator><creator>Stachniss, Cyrill</creator><creator>Burgard, Wolfram</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope></search><sort><creationdate>20130401</creationdate><title>OctoMap: an efficient probabilistic 3D mapping framework based on octrees</title><author>Hornung, Armin ; Wurm, Kai M. ; Bennewitz, Maren ; Stachniss, Cyrill ; Burgard, Wolfram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-cd292b10ccb257b7e63297cfff396dccfaee642d6a29f74ff8678c613ce0f0663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial Intelligence</topic><topic>Computer Imaging</topic><topic>Control</topic><topic>Engineering</topic><topic>Environment models</topic><topic>Freeware</topic><topic>Mapping</topic><topic>Mechatronics</topic><topic>Occupancy</topic><topic>Octrees</topic><topic>Pattern Recognition and Graphics</topic><topic>Probability theory</topic><topic>Representations</topic><topic>Robot arms</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Robots</topic><topic>Source code</topic><topic>Three dimensional models</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hornung, Armin</creatorcontrib><creatorcontrib>Wurm, Kai M.</creatorcontrib><creatorcontrib>Bennewitz, Maren</creatorcontrib><creatorcontrib>Stachniss, Cyrill</creatorcontrib><creatorcontrib>Burgard, Wolfram</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Autonomous robots</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hornung, Armin</au><au>Wurm, Kai M.</au><au>Bennewitz, Maren</au><au>Stachniss, Cyrill</au><au>Burgard, Wolfram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OctoMap: an efficient probabilistic 3D mapping framework based on octrees</atitle><jtitle>Autonomous robots</jtitle><stitle>Auton Robot</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>34</volume><issue>3</issue><spage>189</spage><epage>206</epage><pages>189-206</pages><issn>0929-5593</issn><eissn>1573-7527</eissn><abstract>Three-dimensional models provide a volumetric representation of space which is important for a variety of robotic applications including flying robots and robots that are equipped with manipulators. In this paper, we present an open-source framework to generate volumetric 3D environment models. Our mapping approach is based on octrees and uses probabilistic occupancy estimation. It explicitly represents not only occupied space, but also free and unknown areas. Furthermore, we propose an octree map compression method that keeps the 3D models compact. Our framework is available as an open-source C++ library and has already been successfully applied in several robotics projects. We present a series of experimental results carried out with real robots and on publicly available real-world datasets. The results demonstrate that our approach is able to update the representation efficiently and models the data consistently while keeping the memory requirement at a minimum.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10514-012-9321-0</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0929-5593
ispartof Autonomous robots, 2013-04, Vol.34 (3), p.189-206
issn 0929-5593
1573-7527
language eng
recordid cdi_proquest_miscellaneous_1671400079
source SpringerLink
subjects Artificial Intelligence
Computer Imaging
Control
Engineering
Environment models
Freeware
Mapping
Mechatronics
Occupancy
Octrees
Pattern Recognition and Graphics
Probability theory
Representations
Robot arms
Robotics
Robotics and Automation
Robots
Source code
Three dimensional models
Vision
title OctoMap: an efficient probabilistic 3D mapping framework based on octrees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T16%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OctoMap:%20an%20efficient%20probabilistic%203D%20mapping%20framework%20based%20on%20octrees&rft.jtitle=Autonomous%20robots&rft.au=Hornung,%20Armin&rft.date=2013-04-01&rft.volume=34&rft.issue=3&rft.spage=189&rft.epage=206&rft.pages=189-206&rft.issn=0929-5593&rft.eissn=1573-7527&rft_id=info:doi/10.1007/s10514-012-9321-0&rft_dat=%3Cproquest_cross%3E2933290461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1322447405&rft_id=info:pmid/&rfr_iscdi=true