Artificial neural networks and clustering techniques applied in the reconfiguration of distribution systems

One objective of the feeder reconfiguration problem in distribution systems is to minimize the power losses for a specific load. For this problem, mathematical modeling is a nonlinear mixed integer problem that is generally hard to solve. This paper proposes an algorithm based on artificial neural n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power delivery 2006-07, Vol.21 (3), p.1735-1742
Hauptverfasser: Salazar, H., Gallego, R., Romero, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1742
container_issue 3
container_start_page 1735
container_title IEEE transactions on power delivery
container_volume 21
creator Salazar, H.
Gallego, R.
Romero, R.
description One objective of the feeder reconfiguration problem in distribution systems is to minimize the power losses for a specific load. For this problem, mathematical modeling is a nonlinear mixed integer problem that is generally hard to solve. This paper proposes an algorithm based on artificial neural network theory. In this context, clustering techniques to determine the best training set for a single neural network with generalization ability are also presented. The proposed methodology was employed for solving two electrical systems and presented good results. Moreover, the methodology can be employed for large-scale systems in real-time environment.
doi_str_mv 10.1109/TPWRD.2006.875854
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671399532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1645224</ieee_id><sourcerecordid>1671399532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-af1667dde06620124ad805861faf81572303d1596d216133ab220a96a59914503</originalsourceid><addsrcrecordid>eNpdkF1LHDEYhYNUcLv2B0hvQqHgzaxvPie5XLYfCoIiFi9DzCQanc1skwxl_72zu4LQq8PL-5zD4SB0RmBBCOiL-9uHux8LCiAXqhVK8CM0I5q1DaegPqEZKCUapdv2BH0u5QUAOGiYoddlrjFEF22Pkx_zXuq_Ib8WbFOHXT-W6nNMT7h695zi39FPn82mj77DMeH67HH2bkghPk32GoeEh4C7WGqOj-P-LtspY11O0XGwffFf3nWO_vz6eb-6bK5vfl-tlteNY0LUxgYiZdt1HqSkQCi3nQKhJAk2KCJayoB1RGjZUSIJY_aRUrBaWqE14QLYHJ0fcjd52NWtZh2L831vkx_GYohsCdNaMDqh3_5DX4Yxp6mdUVIyxYHzCSIHyOWhlOyD2eS4tnlrCJjd-ma_vtmtbw7rT57v78G2ONuHbJOL5cPYaiYZ23X9euCi9_7jLbmglLM3RlSOSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866384044</pqid></control><display><type>article</type><title>Artificial neural networks and clustering techniques applied in the reconfiguration of distribution systems</title><source>IEEE Electronic Library (IEL)</source><creator>Salazar, H. ; Gallego, R. ; Romero, R.</creator><creatorcontrib>Salazar, H. ; Gallego, R. ; Romero, R.</creatorcontrib><description>One objective of the feeder reconfiguration problem in distribution systems is to minimize the power losses for a specific load. For this problem, mathematical modeling is a nonlinear mixed integer problem that is generally hard to solve. This paper proposes an algorithm based on artificial neural network theory. In this context, clustering techniques to determine the best training set for a single neural network with generalization ability are also presented. The proposed methodology was employed for solving two electrical systems and presented good results. Moreover, the methodology can be employed for large-scale systems in real-time environment.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2006.875854</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Artificial neural networks ; Artificial neural networks (ANNs) ; Clustering ; clustering techniques ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Exact sciences and technology ; feeder reconfiguration ; Feeders ; Intelligent networks ; Load flow ; Load flow analysis ; Mathematical model ; Mathematical models ; Methodology ; Miscellaneous ; Mixed integer ; Network topology ; Neural networks ; optimization techniques ; Power networks and lines ; Power system restoration ; Reconfiguration ; Student members</subject><ispartof>IEEE transactions on power delivery, 2006-07, Vol.21 (3), p.1735-1742</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-af1667dde06620124ad805861faf81572303d1596d216133ab220a96a59914503</citedby><cites>FETCH-LOGICAL-c355t-af1667dde06620124ad805861faf81572303d1596d216133ab220a96a59914503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1645224$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1645224$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17936330$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Salazar, H.</creatorcontrib><creatorcontrib>Gallego, R.</creatorcontrib><creatorcontrib>Romero, R.</creatorcontrib><title>Artificial neural networks and clustering techniques applied in the reconfiguration of distribution systems</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>One objective of the feeder reconfiguration problem in distribution systems is to minimize the power losses for a specific load. For this problem, mathematical modeling is a nonlinear mixed integer problem that is generally hard to solve. This paper proposes an algorithm based on artificial neural network theory. In this context, clustering techniques to determine the best training set for a single neural network with generalization ability are also presented. The proposed methodology was employed for solving two electrical systems and presented good results. Moreover, the methodology can be employed for large-scale systems in real-time environment.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Artificial neural networks (ANNs)</subject><subject>Clustering</subject><subject>clustering techniques</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Exact sciences and technology</subject><subject>feeder reconfiguration</subject><subject>Feeders</subject><subject>Intelligent networks</subject><subject>Load flow</subject><subject>Load flow analysis</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Miscellaneous</subject><subject>Mixed integer</subject><subject>Network topology</subject><subject>Neural networks</subject><subject>optimization techniques</subject><subject>Power networks and lines</subject><subject>Power system restoration</subject><subject>Reconfiguration</subject><subject>Student members</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkF1LHDEYhYNUcLv2B0hvQqHgzaxvPie5XLYfCoIiFi9DzCQanc1skwxl_72zu4LQq8PL-5zD4SB0RmBBCOiL-9uHux8LCiAXqhVK8CM0I5q1DaegPqEZKCUapdv2BH0u5QUAOGiYoddlrjFEF22Pkx_zXuq_Ib8WbFOHXT-W6nNMT7h695zi39FPn82mj77DMeH67HH2bkghPk32GoeEh4C7WGqOj-P-LtspY11O0XGwffFf3nWO_vz6eb-6bK5vfl-tlteNY0LUxgYiZdt1HqSkQCi3nQKhJAk2KCJayoB1RGjZUSIJY_aRUrBaWqE14QLYHJ0fcjd52NWtZh2L831vkx_GYohsCdNaMDqh3_5DX4Yxp6mdUVIyxYHzCSIHyOWhlOyD2eS4tnlrCJjd-ma_vtmtbw7rT57v78G2ONuHbJOL5cPYaiYZ23X9euCi9_7jLbmglLM3RlSOSw</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Salazar, H.</creator><creator>Gallego, R.</creator><creator>Romero, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20060701</creationdate><title>Artificial neural networks and clustering techniques applied in the reconfiguration of distribution systems</title><author>Salazar, H. ; Gallego, R. ; Romero, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-af1667dde06620124ad805861faf81572303d1596d216133ab220a96a59914503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Artificial neural networks (ANNs)</topic><topic>Clustering</topic><topic>clustering techniques</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Exact sciences and technology</topic><topic>feeder reconfiguration</topic><topic>Feeders</topic><topic>Intelligent networks</topic><topic>Load flow</topic><topic>Load flow analysis</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Miscellaneous</topic><topic>Mixed integer</topic><topic>Network topology</topic><topic>Neural networks</topic><topic>optimization techniques</topic><topic>Power networks and lines</topic><topic>Power system restoration</topic><topic>Reconfiguration</topic><topic>Student members</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salazar, H.</creatorcontrib><creatorcontrib>Gallego, R.</creatorcontrib><creatorcontrib>Romero, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Salazar, H.</au><au>Gallego, R.</au><au>Romero, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural networks and clustering techniques applied in the reconfiguration of distribution systems</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2006-07-01</date><risdate>2006</risdate><volume>21</volume><issue>3</issue><spage>1735</spage><epage>1742</epage><pages>1735-1742</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>One objective of the feeder reconfiguration problem in distribution systems is to minimize the power losses for a specific load. For this problem, mathematical modeling is a nonlinear mixed integer problem that is generally hard to solve. This paper proposes an algorithm based on artificial neural network theory. In this context, clustering techniques to determine the best training set for a single neural network with generalization ability are also presented. The proposed methodology was employed for solving two electrical systems and presented good results. Moreover, the methodology can be employed for large-scale systems in real-time environment.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2006.875854</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8977
ispartof IEEE transactions on power delivery, 2006-07, Vol.21 (3), p.1735-1742
issn 0885-8977
1937-4208
language eng
recordid cdi_proquest_miscellaneous_1671399532
source IEEE Electronic Library (IEL)
subjects Applied sciences
Artificial intelligence
Artificial neural networks
Artificial neural networks (ANNs)
Clustering
clustering techniques
Electrical engineering. Electrical power engineering
Electrical power engineering
Exact sciences and technology
feeder reconfiguration
Feeders
Intelligent networks
Load flow
Load flow analysis
Mathematical model
Mathematical models
Methodology
Miscellaneous
Mixed integer
Network topology
Neural networks
optimization techniques
Power networks and lines
Power system restoration
Reconfiguration
Student members
title Artificial neural networks and clustering techniques applied in the reconfiguration of distribution systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A41%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20networks%20and%20clustering%20techniques%20applied%20in%20the%20reconfiguration%20of%20distribution%20systems&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Salazar,%20H.&rft.date=2006-07-01&rft.volume=21&rft.issue=3&rft.spage=1735&rft.epage=1742&rft.pages=1735-1742&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2006.875854&rft_dat=%3Cproquest_RIE%3E1671399532%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=866384044&rft_id=info:pmid/&rft_ieee_id=1645224&rfr_iscdi=true