The Ridge Function Representation of Polynomials and an Application to Neural Networks
The first goal of this paper is to establish some properties of the ridge function representation for multivariate polynomials, and the second one is to apply these results to the problem of approximation by neural networks. We find that for continuous functions, the rate of approximation obtained b...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2011-11, Vol.27 (11), p.2169-2176 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2176 |
---|---|
container_issue | 11 |
container_start_page | 2169 |
container_title | Acta mathematica Sinica. English series |
container_volume | 27 |
creator | Xie, Ting Fan Cao, Fei Long |
description | The first goal of this paper is to establish some properties of the ridge function representation for multivariate polynomials, and the second one is to apply these results to the problem of approximation by neural networks. We find that for continuous functions, the rate of approximation obtained by a neural network with one hidden layer is no slower than that of an algebraic polynomial. |
doi_str_mv | 10.1007/s10114-011-9407-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671395857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>39919919</cqvip_id><sourcerecordid>2476795801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-4a01b9a3a2e4115b1c13bf6d50a08216b8d15b76740321de5bda2bba5e9058923</originalsourceid><addsrcrecordid>eNp9kN9LwzAQx4soOKd_gG_VJ1-queZX8ziGU2GojOlrSNts6-ySLmmR_fdmdij4ICR3ufD53h3fKLoEdAsI8TsPCIAkISSCIJ7AUTQAgkXCGfDjwzujwE6jM-_XCFEqEBtE7_OVjmdVudTxpDNFW1kTz3TjtNemVd-lXcSvtt4Zu6lU7WNlynDjUdPUVdETrY2fdedUHVL7ad2HP49OFgHWF4c8jN4m9_PxYzJ9eXgaj6ZJgTlpE6IQ5EJhlWoCQHMoAOcLVlKkUJYCy7My_HLGCcIplJrmpUrzXFEtEM1EiofRTd-3cXbbad_KTeULXdfKaNt5CYwDFjSjPKDXf9C17ZwJ28lMMIJSikiAoIcKZ713eiEbV22U20lAcm-07I2WIci90RKCJu01PrBmqd1v4_9EV4dBK2uW26D7mYSFgP3BX8UqirA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896402504</pqid></control><display><type>article</type><title>The Ridge Function Representation of Polynomials and an Application to Neural Networks</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Xie, Ting Fan ; Cao, Fei Long</creator><creatorcontrib>Xie, Ting Fan ; Cao, Fei Long</creatorcontrib><description>The first goal of this paper is to establish some properties of the ridge function representation for multivariate polynomials, and the second one is to apply these results to the problem of approximation by neural networks. We find that for continuous functions, the rate of approximation obtained by a neural network with one hidden layer is no slower than that of an algebraic polynomial.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-011-9407-1</identifier><language>eng</language><publisher>Heidelberg: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</publisher><subject>Algebra ; Approximation ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Multivariate analysis ; Neural networks ; Polynomials ; Representations ; Ridges ; Studies ; 代数多项式 ; 多元多项式 ; 多项式函数 ; 应用 ; 神经网络 ; 表示法 ; 连续函数 ; 逼近问题</subject><ispartof>Acta mathematica Sinica. English series, 2011-11, Vol.27 (11), p.2169-2176</ispartof><rights>Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-4a01b9a3a2e4115b1c13bf6d50a08216b8d15b76740321de5bda2bba5e9058923</citedby><cites>FETCH-LOGICAL-c374t-4a01b9a3a2e4115b1c13bf6d50a08216b8d15b76740321de5bda2bba5e9058923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85800X/85800X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10114-011-9407-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10114-011-9407-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Xie, Ting Fan</creatorcontrib><creatorcontrib>Cao, Fei Long</creatorcontrib><title>The Ridge Function Representation of Polynomials and an Application to Neural Networks</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><addtitle>Acta Mathematica Sinica</addtitle><description>The first goal of this paper is to establish some properties of the ridge function representation for multivariate polynomials, and the second one is to apply these results to the problem of approximation by neural networks. We find that for continuous functions, the rate of approximation obtained by a neural network with one hidden layer is no slower than that of an algebraic polynomial.</description><subject>Algebra</subject><subject>Approximation</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multivariate analysis</subject><subject>Neural networks</subject><subject>Polynomials</subject><subject>Representations</subject><subject>Ridges</subject><subject>Studies</subject><subject>代数多项式</subject><subject>多元多项式</subject><subject>多项式函数</subject><subject>应用</subject><subject>神经网络</subject><subject>表示法</subject><subject>连续函数</subject><subject>逼近问题</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kN9LwzAQx4soOKd_gG_VJ1-queZX8ziGU2GojOlrSNts6-ySLmmR_fdmdij4ICR3ufD53h3fKLoEdAsI8TsPCIAkISSCIJ7AUTQAgkXCGfDjwzujwE6jM-_XCFEqEBtE7_OVjmdVudTxpDNFW1kTz3TjtNemVd-lXcSvtt4Zu6lU7WNlynDjUdPUVdETrY2fdedUHVL7ad2HP49OFgHWF4c8jN4m9_PxYzJ9eXgaj6ZJgTlpE6IQ5EJhlWoCQHMoAOcLVlKkUJYCy7My_HLGCcIplJrmpUrzXFEtEM1EiofRTd-3cXbbad_KTeULXdfKaNt5CYwDFjSjPKDXf9C17ZwJ28lMMIJSikiAoIcKZ713eiEbV22U20lAcm-07I2WIci90RKCJu01PrBmqd1v4_9EV4dBK2uW26D7mYSFgP3BX8UqirA</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Xie, Ting Fan</creator><creator>Cao, Fei Long</creator><general>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20111101</creationdate><title>The Ridge Function Representation of Polynomials and an Application to Neural Networks</title><author>Xie, Ting Fan ; Cao, Fei Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-4a01b9a3a2e4115b1c13bf6d50a08216b8d15b76740321de5bda2bba5e9058923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Approximation</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multivariate analysis</topic><topic>Neural networks</topic><topic>Polynomials</topic><topic>Representations</topic><topic>Ridges</topic><topic>Studies</topic><topic>代数多项式</topic><topic>多元多项式</topic><topic>多项式函数</topic><topic>应用</topic><topic>神经网络</topic><topic>表示法</topic><topic>连续函数</topic><topic>逼近问题</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Ting Fan</creatorcontrib><creatorcontrib>Cao, Fei Long</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Ting Fan</au><au>Cao, Fei Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Ridge Function Representation of Polynomials and an Application to Neural Networks</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><addtitle>Acta Mathematica Sinica</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>27</volume><issue>11</issue><spage>2169</spage><epage>2176</epage><pages>2169-2176</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>The first goal of this paper is to establish some properties of the ridge function representation for multivariate polynomials, and the second one is to apply these results to the problem of approximation by neural networks. We find that for continuous functions, the rate of approximation obtained by a neural network with one hidden layer is no slower than that of an algebraic polynomial.</abstract><cop>Heidelberg</cop><pub>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</pub><doi>10.1007/s10114-011-9407-1</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-8516 |
ispartof | Acta mathematica Sinica. English series, 2011-11, Vol.27 (11), p.2169-2176 |
issn | 1439-8516 1439-7617 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671395857 |
source | SpringerNature Journals; Alma/SFX Local Collection |
subjects | Algebra Approximation Mathematical analysis Mathematics Mathematics and Statistics Multivariate analysis Neural networks Polynomials Representations Ridges Studies 代数多项式 多元多项式 多项式函数 应用 神经网络 表示法 连续函数 逼近问题 |
title | The Ridge Function Representation of Polynomials and an Application to Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T00%3A42%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Ridge%20Function%20Representation%20of%20Polynomials%20and%20an%20Application%20to%20Neural%20Networks&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Xie,%20Ting%20Fan&rft.date=2011-11-01&rft.volume=27&rft.issue=11&rft.spage=2169&rft.epage=2176&rft.pages=2169-2176&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-011-9407-1&rft_dat=%3Cproquest_cross%3E2476795801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896402504&rft_id=info:pmid/&rft_cqvip_id=39919919&rfr_iscdi=true |