Multiple Model Adaptive Nonlinear Observer of Dynamic Positioning Ship
Considering the filtering problem of dynamic positioning (DP) ship for the slowly varying sea state, a multiple model adaptive observer (MMAO) for dynamic positioning ship is presented. The MMAO consists of a bank of nonlinear subobserver and a dynamic weighting signal generator, in which each sub-o...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2013-01, Vol.2013 (2013), p.1-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 2013 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2013 |
creator | Zhao, Dawei Bian, Xinqian Lin, Xiaogong Xie, Yehai |
description | Considering the filtering problem of dynamic positioning (DP) ship for the slowly varying sea state, a multiple model adaptive observer (MMAO) for dynamic positioning ship is presented. The MMAO consists of a bank of nonlinear subobserver and a dynamic weighting signal generator, in which each sub-observer is designed based on different peak frequency of wave spectrum model. To improve the performance of the observer, subobserver using the measurement of position, velocity, and acceleration is used to update the estimated velocity of ship. The observer parameters are optimized using particle swarm optimization (PSO). Finally, the method is verified effective by the computer simulation. |
doi_str_mv | 10.1155/2013/893081 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671390122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1986189281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-a405423281e1fa3aa5824abe4eb1e648fc0e12f037f4b43205e1c7bb5977a18d3</originalsourceid><addsrcrecordid>eNqF0M1Lw0AQBfAgCtbqybsEvIgSu7MfzeYo1arQWkEFb2GTTOyWdDfuJpX-96bEg3jxNHP48Xi8IDgFcg0gxIgSYCOZMCJhLxiAGLNIAI_3u59QHgFl74fBkfcrQigIkINgOm-rRtcVhnNbYBXeFKpu9AbDJ2sqbVC5cJF5dBt0oS3D261Ra52Hz9brRlujzUf4stT1cXBQqsrjyc8dBm_Tu9fJQzRb3D9ObmZRznjcRIoTwSmjEhBKxZQSknKVIccMcMxlmRMEWhIWlzzjjBKBkMdZJpI4ViALNgwu-tza2c8WfZOutc-xqpRB2_oUxjGwhAClHT3_Q1e2daZrl0IixyCTrkanrnqVO-u9wzKtnV4rt02BpLtN092mab9ppy97vdSmUF_6H3zWY-wIluoXZpQzYN8mOH4R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986189281</pqid></control><display><type>article</type><title>Multiple Model Adaptive Nonlinear Observer of Dynamic Positioning Ship</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Zhao, Dawei ; Bian, Xinqian ; Lin, Xiaogong ; Xie, Yehai</creator><contributor>Zhang, Lijun</contributor><creatorcontrib>Zhao, Dawei ; Bian, Xinqian ; Lin, Xiaogong ; Xie, Yehai ; Zhang, Lijun</creatorcontrib><description>Considering the filtering problem of dynamic positioning (DP) ship for the slowly varying sea state, a multiple model adaptive observer (MMAO) for dynamic positioning ship is presented. The MMAO consists of a bank of nonlinear subobserver and a dynamic weighting signal generator, in which each sub-observer is designed based on different peak frequency of wave spectrum model. To improve the performance of the observer, subobserver using the measurement of position, velocity, and acceleration is used to update the estimated velocity of ship. The observer parameters are optimized using particle swarm optimization (PSO). Finally, the method is verified effective by the computer simulation.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2013/893081</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Adaptive filters ; Automation ; Computer simulation ; Control theory ; Controllers ; Design ; International conferences ; Kinematics ; Mathematical models ; Mathematical problems ; Neural networks ; Noise ; Nonlinear dynamics ; Nonlinearity ; Observers ; Particle swarm optimization ; Peak frequency ; Performance enhancement ; Position measurement ; Ships ; Signal generators ; Signal processing ; Simulation ; Swarm intelligence ; Velocity</subject><ispartof>Mathematical problems in engineering, 2013-01, Vol.2013 (2013), p.1-10</ispartof><rights>Copyright © 2013 Yehai Xie et al.</rights><rights>Copyright © 2013 Yehai Xie et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c347t-a405423281e1fa3aa5824abe4eb1e648fc0e12f037f4b43205e1c7bb5977a18d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Zhang, Lijun</contributor><creatorcontrib>Zhao, Dawei</creatorcontrib><creatorcontrib>Bian, Xinqian</creatorcontrib><creatorcontrib>Lin, Xiaogong</creatorcontrib><creatorcontrib>Xie, Yehai</creatorcontrib><title>Multiple Model Adaptive Nonlinear Observer of Dynamic Positioning Ship</title><title>Mathematical problems in engineering</title><description>Considering the filtering problem of dynamic positioning (DP) ship for the slowly varying sea state, a multiple model adaptive observer (MMAO) for dynamic positioning ship is presented. The MMAO consists of a bank of nonlinear subobserver and a dynamic weighting signal generator, in which each sub-observer is designed based on different peak frequency of wave spectrum model. To improve the performance of the observer, subobserver using the measurement of position, velocity, and acceleration is used to update the estimated velocity of ship. The observer parameters are optimized using particle swarm optimization (PSO). Finally, the method is verified effective by the computer simulation.</description><subject>Adaptive filters</subject><subject>Automation</subject><subject>Computer simulation</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Design</subject><subject>International conferences</subject><subject>Kinematics</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Observers</subject><subject>Particle swarm optimization</subject><subject>Peak frequency</subject><subject>Performance enhancement</subject><subject>Position measurement</subject><subject>Ships</subject><subject>Signal generators</subject><subject>Signal processing</subject><subject>Simulation</subject><subject>Swarm intelligence</subject><subject>Velocity</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0M1Lw0AQBfAgCtbqybsEvIgSu7MfzeYo1arQWkEFb2GTTOyWdDfuJpX-96bEg3jxNHP48Xi8IDgFcg0gxIgSYCOZMCJhLxiAGLNIAI_3u59QHgFl74fBkfcrQigIkINgOm-rRtcVhnNbYBXeFKpu9AbDJ2sqbVC5cJF5dBt0oS3D261Ra52Hz9brRlujzUf4stT1cXBQqsrjyc8dBm_Tu9fJQzRb3D9ObmZRznjcRIoTwSmjEhBKxZQSknKVIccMcMxlmRMEWhIWlzzjjBKBkMdZJpI4ViALNgwu-tza2c8WfZOutc-xqpRB2_oUxjGwhAClHT3_Q1e2daZrl0IixyCTrkanrnqVO-u9wzKtnV4rt02BpLtN092mab9ppy97vdSmUF_6H3zWY-wIluoXZpQzYN8mOH4R</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Zhao, Dawei</creator><creator>Bian, Xinqian</creator><creator>Lin, Xiaogong</creator><creator>Xie, Yehai</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130101</creationdate><title>Multiple Model Adaptive Nonlinear Observer of Dynamic Positioning Ship</title><author>Zhao, Dawei ; Bian, Xinqian ; Lin, Xiaogong ; Xie, Yehai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-a405423281e1fa3aa5824abe4eb1e648fc0e12f037f4b43205e1c7bb5977a18d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptive filters</topic><topic>Automation</topic><topic>Computer simulation</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Design</topic><topic>International conferences</topic><topic>Kinematics</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Observers</topic><topic>Particle swarm optimization</topic><topic>Peak frequency</topic><topic>Performance enhancement</topic><topic>Position measurement</topic><topic>Ships</topic><topic>Signal generators</topic><topic>Signal processing</topic><topic>Simulation</topic><topic>Swarm intelligence</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Dawei</creatorcontrib><creatorcontrib>Bian, Xinqian</creatorcontrib><creatorcontrib>Lin, Xiaogong</creatorcontrib><creatorcontrib>Xie, Yehai</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Dawei</au><au>Bian, Xinqian</au><au>Lin, Xiaogong</au><au>Xie, Yehai</au><au>Zhang, Lijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple Model Adaptive Nonlinear Observer of Dynamic Positioning Ship</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Considering the filtering problem of dynamic positioning (DP) ship for the slowly varying sea state, a multiple model adaptive observer (MMAO) for dynamic positioning ship is presented. The MMAO consists of a bank of nonlinear subobserver and a dynamic weighting signal generator, in which each sub-observer is designed based on different peak frequency of wave spectrum model. To improve the performance of the observer, subobserver using the measurement of position, velocity, and acceleration is used to update the estimated velocity of ship. The observer parameters are optimized using particle swarm optimization (PSO). Finally, the method is verified effective by the computer simulation.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2013/893081</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2013-01, Vol.2013 (2013), p.1-10 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671390122 |
source | Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Adaptive filters Automation Computer simulation Control theory Controllers Design International conferences Kinematics Mathematical models Mathematical problems Neural networks Noise Nonlinear dynamics Nonlinearity Observers Particle swarm optimization Peak frequency Performance enhancement Position measurement Ships Signal generators Signal processing Simulation Swarm intelligence Velocity |
title | Multiple Model Adaptive Nonlinear Observer of Dynamic Positioning Ship |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A27%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20Model%20Adaptive%20Nonlinear%20Observer%20of%20Dynamic%20Positioning%20Ship&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Zhao,%20Dawei&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2013/893081&rft_dat=%3Cproquest_cross%3E1986189281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1986189281&rft_id=info:pmid/&rfr_iscdi=true |