Multiple Model Adaptive Nonlinear Observer of Dynamic Positioning Ship

Considering the filtering problem of dynamic positioning (DP) ship for the slowly varying sea state, a multiple model adaptive observer (MMAO) for dynamic positioning ship is presented. The MMAO consists of a bank of nonlinear subobserver and a dynamic weighting signal generator, in which each sub-o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2013-01, Vol.2013 (2013), p.1-10
Hauptverfasser: Zhao, Dawei, Bian, Xinqian, Lin, Xiaogong, Xie, Yehai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2013
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2013
creator Zhao, Dawei
Bian, Xinqian
Lin, Xiaogong
Xie, Yehai
description Considering the filtering problem of dynamic positioning (DP) ship for the slowly varying sea state, a multiple model adaptive observer (MMAO) for dynamic positioning ship is presented. The MMAO consists of a bank of nonlinear subobserver and a dynamic weighting signal generator, in which each sub-observer is designed based on different peak frequency of wave spectrum model. To improve the performance of the observer, subobserver using the measurement of position, velocity, and acceleration is used to update the estimated velocity of ship. The observer parameters are optimized using particle swarm optimization (PSO). Finally, the method is verified effective by the computer simulation.
doi_str_mv 10.1155/2013/893081
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671390122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1986189281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-a405423281e1fa3aa5824abe4eb1e648fc0e12f037f4b43205e1c7bb5977a18d3</originalsourceid><addsrcrecordid>eNqF0M1Lw0AQBfAgCtbqybsEvIgSu7MfzeYo1arQWkEFb2GTTOyWdDfuJpX-96bEg3jxNHP48Xi8IDgFcg0gxIgSYCOZMCJhLxiAGLNIAI_3u59QHgFl74fBkfcrQigIkINgOm-rRtcVhnNbYBXeFKpu9AbDJ2sqbVC5cJF5dBt0oS3D261Ra52Hz9brRlujzUf4stT1cXBQqsrjyc8dBm_Tu9fJQzRb3D9ObmZRznjcRIoTwSmjEhBKxZQSknKVIccMcMxlmRMEWhIWlzzjjBKBkMdZJpI4ViALNgwu-tza2c8WfZOutc-xqpRB2_oUxjGwhAClHT3_Q1e2daZrl0IixyCTrkanrnqVO-u9wzKtnV4rt02BpLtN092mab9ppy97vdSmUF_6H3zWY-wIluoXZpQzYN8mOH4R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986189281</pqid></control><display><type>article</type><title>Multiple Model Adaptive Nonlinear Observer of Dynamic Positioning Ship</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Zhao, Dawei ; Bian, Xinqian ; Lin, Xiaogong ; Xie, Yehai</creator><contributor>Zhang, Lijun</contributor><creatorcontrib>Zhao, Dawei ; Bian, Xinqian ; Lin, Xiaogong ; Xie, Yehai ; Zhang, Lijun</creatorcontrib><description>Considering the filtering problem of dynamic positioning (DP) ship for the slowly varying sea state, a multiple model adaptive observer (MMAO) for dynamic positioning ship is presented. The MMAO consists of a bank of nonlinear subobserver and a dynamic weighting signal generator, in which each sub-observer is designed based on different peak frequency of wave spectrum model. To improve the performance of the observer, subobserver using the measurement of position, velocity, and acceleration is used to update the estimated velocity of ship. The observer parameters are optimized using particle swarm optimization (PSO). Finally, the method is verified effective by the computer simulation.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2013/893081</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Adaptive filters ; Automation ; Computer simulation ; Control theory ; Controllers ; Design ; International conferences ; Kinematics ; Mathematical models ; Mathematical problems ; Neural networks ; Noise ; Nonlinear dynamics ; Nonlinearity ; Observers ; Particle swarm optimization ; Peak frequency ; Performance enhancement ; Position measurement ; Ships ; Signal generators ; Signal processing ; Simulation ; Swarm intelligence ; Velocity</subject><ispartof>Mathematical problems in engineering, 2013-01, Vol.2013 (2013), p.1-10</ispartof><rights>Copyright © 2013 Yehai Xie et al.</rights><rights>Copyright © 2013 Yehai Xie et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c347t-a405423281e1fa3aa5824abe4eb1e648fc0e12f037f4b43205e1c7bb5977a18d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Zhang, Lijun</contributor><creatorcontrib>Zhao, Dawei</creatorcontrib><creatorcontrib>Bian, Xinqian</creatorcontrib><creatorcontrib>Lin, Xiaogong</creatorcontrib><creatorcontrib>Xie, Yehai</creatorcontrib><title>Multiple Model Adaptive Nonlinear Observer of Dynamic Positioning Ship</title><title>Mathematical problems in engineering</title><description>Considering the filtering problem of dynamic positioning (DP) ship for the slowly varying sea state, a multiple model adaptive observer (MMAO) for dynamic positioning ship is presented. The MMAO consists of a bank of nonlinear subobserver and a dynamic weighting signal generator, in which each sub-observer is designed based on different peak frequency of wave spectrum model. To improve the performance of the observer, subobserver using the measurement of position, velocity, and acceleration is used to update the estimated velocity of ship. The observer parameters are optimized using particle swarm optimization (PSO). Finally, the method is verified effective by the computer simulation.</description><subject>Adaptive filters</subject><subject>Automation</subject><subject>Computer simulation</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Design</subject><subject>International conferences</subject><subject>Kinematics</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Observers</subject><subject>Particle swarm optimization</subject><subject>Peak frequency</subject><subject>Performance enhancement</subject><subject>Position measurement</subject><subject>Ships</subject><subject>Signal generators</subject><subject>Signal processing</subject><subject>Simulation</subject><subject>Swarm intelligence</subject><subject>Velocity</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0M1Lw0AQBfAgCtbqybsEvIgSu7MfzeYo1arQWkEFb2GTTOyWdDfuJpX-96bEg3jxNHP48Xi8IDgFcg0gxIgSYCOZMCJhLxiAGLNIAI_3u59QHgFl74fBkfcrQigIkINgOm-rRtcVhnNbYBXeFKpu9AbDJ2sqbVC5cJF5dBt0oS3D261Ra52Hz9brRlujzUf4stT1cXBQqsrjyc8dBm_Tu9fJQzRb3D9ObmZRznjcRIoTwSmjEhBKxZQSknKVIccMcMxlmRMEWhIWlzzjjBKBkMdZJpI4ViALNgwu-tza2c8WfZOutc-xqpRB2_oUxjGwhAClHT3_Q1e2daZrl0IixyCTrkanrnqVO-u9wzKtnV4rt02BpLtN092mab9ppy97vdSmUF_6H3zWY-wIluoXZpQzYN8mOH4R</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Zhao, Dawei</creator><creator>Bian, Xinqian</creator><creator>Lin, Xiaogong</creator><creator>Xie, Yehai</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130101</creationdate><title>Multiple Model Adaptive Nonlinear Observer of Dynamic Positioning Ship</title><author>Zhao, Dawei ; Bian, Xinqian ; Lin, Xiaogong ; Xie, Yehai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-a405423281e1fa3aa5824abe4eb1e648fc0e12f037f4b43205e1c7bb5977a18d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptive filters</topic><topic>Automation</topic><topic>Computer simulation</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Design</topic><topic>International conferences</topic><topic>Kinematics</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Observers</topic><topic>Particle swarm optimization</topic><topic>Peak frequency</topic><topic>Performance enhancement</topic><topic>Position measurement</topic><topic>Ships</topic><topic>Signal generators</topic><topic>Signal processing</topic><topic>Simulation</topic><topic>Swarm intelligence</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Dawei</creatorcontrib><creatorcontrib>Bian, Xinqian</creatorcontrib><creatorcontrib>Lin, Xiaogong</creatorcontrib><creatorcontrib>Xie, Yehai</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Dawei</au><au>Bian, Xinqian</au><au>Lin, Xiaogong</au><au>Xie, Yehai</au><au>Zhang, Lijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple Model Adaptive Nonlinear Observer of Dynamic Positioning Ship</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Considering the filtering problem of dynamic positioning (DP) ship for the slowly varying sea state, a multiple model adaptive observer (MMAO) for dynamic positioning ship is presented. The MMAO consists of a bank of nonlinear subobserver and a dynamic weighting signal generator, in which each sub-observer is designed based on different peak frequency of wave spectrum model. To improve the performance of the observer, subobserver using the measurement of position, velocity, and acceleration is used to update the estimated velocity of ship. The observer parameters are optimized using particle swarm optimization (PSO). Finally, the method is verified effective by the computer simulation.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2013/893081</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2013-01, Vol.2013 (2013), p.1-10
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_miscellaneous_1671390122
source Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Adaptive filters
Automation
Computer simulation
Control theory
Controllers
Design
International conferences
Kinematics
Mathematical models
Mathematical problems
Neural networks
Noise
Nonlinear dynamics
Nonlinearity
Observers
Particle swarm optimization
Peak frequency
Performance enhancement
Position measurement
Ships
Signal generators
Signal processing
Simulation
Swarm intelligence
Velocity
title Multiple Model Adaptive Nonlinear Observer of Dynamic Positioning Ship
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A27%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20Model%20Adaptive%20Nonlinear%20Observer%20of%20Dynamic%20Positioning%20Ship&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Zhao,%20Dawei&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2013/893081&rft_dat=%3Cproquest_cross%3E1986189281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1986189281&rft_id=info:pmid/&rfr_iscdi=true