Surface micromachined metallic microneedles

In this paper, a method for fabricating surface micromachined, hollow, metallic microneedles is described. Single microneedle and multiple microneedle arrays with process enabled features such as complex tip geometries, micro barbs, mechanical penetration stops and multiple fluid output ports were f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2003-06, Vol.12 (3), p.281-288
Hauptverfasser: Chandrasekaran, S., Brazzle, J.D., Frazier, A.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 288
container_issue 3
container_start_page 281
container_title Journal of microelectromechanical systems
container_volume 12
creator Chandrasekaran, S.
Brazzle, J.D.
Frazier, A.B.
description In this paper, a method for fabricating surface micromachined, hollow, metallic microneedles is described. Single microneedle and multiple microneedle arrays with process enabled features such as complex tip geometries, micro barbs, mechanical penetration stops and multiple fluid output ports were fabricated, packaged and characterized. The microneedles were fabricated using electroplated metals including palladium, palladium-cobalt alloys and nickel as structural materials. The microneedles were 200 mm-2.0 cm in length with a cross-section of 70-200 /spl mu/m in width and 75-120 /spl mu/m in height, with a wall thickness of 30-35 /spl mu/m. The microneedle arrays were typically 9.0 mm in width and 3.0 mm in height with between 3 and 17 needles per array. Using water as the fluid medium, the average inlet pressure was found to be 30.0 KPa for a flow rate of 1000 /spl mu/L/h and 106 KPa for a flow rate 4000 /spl mu/L/h.
doi_str_mv 10.1109/JMEMS.2003.809951
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671388189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1203766</ieee_id><sourcerecordid>28621280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-22a17e2eb8e641ed73efb2ea8d86f56c061ad2f01aba1e38aa5af5a19c6f325b3</originalsourceid><addsrcrecordid>eNqN0ctKAzEUBuBBFKzVBxA3RVAEmZqTTC6zlFJvtLiorsNp5gSnzEzrpF349qZOoeBCXCUk3_kh-ZPkHNgQgOV3L9PxdDbkjImhYXku4SDpQZ5BykCaw7hnUqcapD5OTkJYMAZZZlQvuZ1tWo-OBnXp2mWN7qNsqBjUtMaqKl133BAVFYXT5MhjFehst_aT94fx2-gpnbw-Po_uJ6nLQK5TzhE0cZobUhlQoQX5OSc0hVFeKscUYME9A5wjkDCIEr1EyJ3ygsu56CfXXe6qXX5uKKxtXQZHVYUNLTfBcmPAcKP_ARUHbliEN39CUBrENjWP9PIXXSw3bRPfa3MOmdGQq4igQ_FzQmjJ21Vb1th-WWB224f96cNu-7BdH3HmaheMwWHlW2xcGfaDMVoKZqK76FxJRPtrzoRWSnwD1-6SXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921487196</pqid></control><display><type>article</type><title>Surface micromachined metallic microneedles</title><source>IEEE Electronic Library (IEL)</source><creator>Chandrasekaran, S. ; Brazzle, J.D. ; Frazier, A.B.</creator><creatorcontrib>Chandrasekaran, S. ; Brazzle, J.D. ; Frazier, A.B.</creatorcontrib><description>In this paper, a method for fabricating surface micromachined, hollow, metallic microneedles is described. Single microneedle and multiple microneedle arrays with process enabled features such as complex tip geometries, micro barbs, mechanical penetration stops and multiple fluid output ports were fabricated, packaged and characterized. The microneedles were fabricated using electroplated metals including palladium, palladium-cobalt alloys and nickel as structural materials. The microneedles were 200 mm-2.0 cm in length with a cross-section of 70-200 /spl mu/m in width and 75-120 /spl mu/m in height, with a wall thickness of 30-35 /spl mu/m. The microneedle arrays were typically 9.0 mm in width and 3.0 mm in height with between 3 and 17 needles per array. Using water as the fluid medium, the average inlet pressure was found to be 30.0 KPa for a flow rate of 1000 /spl mu/L/h and 106 KPa for a flow rate 4000 /spl mu/L/h.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2003.809951</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Alloys ; Applied sciences ; Arrays ; Biological and medical sciences ; Cross-disciplinary physics: materials science; rheology ; Drug delivery ; Etching ; Exact sciences and technology ; Fabrication ; Flow rate ; Fluid dynamics ; Fluid flow ; Fluids ; Geometry ; Materials science ; Mechanical engineering. Machine design ; Medical sciences ; Micromachining ; Micromechanics ; Miscellaneous ; Nanoscale materials and structures: fabrication and characterization ; Needles ; Packaging ; Pharmaceutical technology ; Physics ; Precision engineering, watch making ; Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) ; Silicon ; Skin ; Solids</subject><ispartof>Journal of microelectromechanical systems, 2003-06, Vol.12 (3), p.281-288</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-22a17e2eb8e641ed73efb2ea8d86f56c061ad2f01aba1e38aa5af5a19c6f325b3</citedby><cites>FETCH-LOGICAL-c415t-22a17e2eb8e641ed73efb2ea8d86f56c061ad2f01aba1e38aa5af5a19c6f325b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1203766$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1203766$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14875308$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chandrasekaran, S.</creatorcontrib><creatorcontrib>Brazzle, J.D.</creatorcontrib><creatorcontrib>Frazier, A.B.</creatorcontrib><title>Surface micromachined metallic microneedles</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>In this paper, a method for fabricating surface micromachined, hollow, metallic microneedles is described. Single microneedle and multiple microneedle arrays with process enabled features such as complex tip geometries, micro barbs, mechanical penetration stops and multiple fluid output ports were fabricated, packaged and characterized. The microneedles were fabricated using electroplated metals including palladium, palladium-cobalt alloys and nickel as structural materials. The microneedles were 200 mm-2.0 cm in length with a cross-section of 70-200 /spl mu/m in width and 75-120 /spl mu/m in height, with a wall thickness of 30-35 /spl mu/m. The microneedle arrays were typically 9.0 mm in width and 3.0 mm in height with between 3 and 17 needles per array. Using water as the fluid medium, the average inlet pressure was found to be 30.0 KPa for a flow rate of 1000 /spl mu/L/h and 106 KPa for a flow rate 4000 /spl mu/L/h.</description><subject>Alloys</subject><subject>Applied sciences</subject><subject>Arrays</subject><subject>Biological and medical sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Drug delivery</subject><subject>Etching</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>Flow rate</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Geometry</subject><subject>Materials science</subject><subject>Mechanical engineering. Machine design</subject><subject>Medical sciences</subject><subject>Micromachining</subject><subject>Micromechanics</subject><subject>Miscellaneous</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Needles</subject><subject>Packaging</subject><subject>Pharmaceutical technology</subject><subject>Physics</subject><subject>Precision engineering, watch making</subject><subject>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</subject><subject>Silicon</subject><subject>Skin</subject><subject>Solids</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0ctKAzEUBuBBFKzVBxA3RVAEmZqTTC6zlFJvtLiorsNp5gSnzEzrpF349qZOoeBCXCUk3_kh-ZPkHNgQgOV3L9PxdDbkjImhYXku4SDpQZ5BykCaw7hnUqcapD5OTkJYMAZZZlQvuZ1tWo-OBnXp2mWN7qNsqBjUtMaqKl133BAVFYXT5MhjFehst_aT94fx2-gpnbw-Po_uJ6nLQK5TzhE0cZobUhlQoQX5OSc0hVFeKscUYME9A5wjkDCIEr1EyJ3ygsu56CfXXe6qXX5uKKxtXQZHVYUNLTfBcmPAcKP_ARUHbliEN39CUBrENjWP9PIXXSw3bRPfa3MOmdGQq4igQ_FzQmjJ21Vb1th-WWB224f96cNu-7BdH3HmaheMwWHlW2xcGfaDMVoKZqK76FxJRPtrzoRWSnwD1-6SXA</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>Chandrasekaran, S.</creator><creator>Brazzle, J.D.</creator><creator>Frazier, A.B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20030601</creationdate><title>Surface micromachined metallic microneedles</title><author>Chandrasekaran, S. ; Brazzle, J.D. ; Frazier, A.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-22a17e2eb8e641ed73efb2ea8d86f56c061ad2f01aba1e38aa5af5a19c6f325b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Alloys</topic><topic>Applied sciences</topic><topic>Arrays</topic><topic>Biological and medical sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Drug delivery</topic><topic>Etching</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>Flow rate</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Geometry</topic><topic>Materials science</topic><topic>Mechanical engineering. Machine design</topic><topic>Medical sciences</topic><topic>Micromachining</topic><topic>Micromechanics</topic><topic>Miscellaneous</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Needles</topic><topic>Packaging</topic><topic>Pharmaceutical technology</topic><topic>Physics</topic><topic>Precision engineering, watch making</topic><topic>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</topic><topic>Silicon</topic><topic>Skin</topic><topic>Solids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandrasekaran, S.</creatorcontrib><creatorcontrib>Brazzle, J.D.</creatorcontrib><creatorcontrib>Frazier, A.B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chandrasekaran, S.</au><au>Brazzle, J.D.</au><au>Frazier, A.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface micromachined metallic microneedles</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2003-06-01</date><risdate>2003</risdate><volume>12</volume><issue>3</issue><spage>281</spage><epage>288</epage><pages>281-288</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>In this paper, a method for fabricating surface micromachined, hollow, metallic microneedles is described. Single microneedle and multiple microneedle arrays with process enabled features such as complex tip geometries, micro barbs, mechanical penetration stops and multiple fluid output ports were fabricated, packaged and characterized. The microneedles were fabricated using electroplated metals including palladium, palladium-cobalt alloys and nickel as structural materials. The microneedles were 200 mm-2.0 cm in length with a cross-section of 70-200 /spl mu/m in width and 75-120 /spl mu/m in height, with a wall thickness of 30-35 /spl mu/m. The microneedle arrays were typically 9.0 mm in width and 3.0 mm in height with between 3 and 17 needles per array. Using water as the fluid medium, the average inlet pressure was found to be 30.0 KPa for a flow rate of 1000 /spl mu/L/h and 106 KPa for a flow rate 4000 /spl mu/L/h.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2003.809951</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2003-06, Vol.12 (3), p.281-288
issn 1057-7157
1941-0158
language eng
recordid cdi_proquest_miscellaneous_1671388189
source IEEE Electronic Library (IEL)
subjects Alloys
Applied sciences
Arrays
Biological and medical sciences
Cross-disciplinary physics: materials science
rheology
Drug delivery
Etching
Exact sciences and technology
Fabrication
Flow rate
Fluid dynamics
Fluid flow
Fluids
Geometry
Materials science
Mechanical engineering. Machine design
Medical sciences
Micromachining
Micromechanics
Miscellaneous
Nanoscale materials and structures: fabrication and characterization
Needles
Packaging
Pharmaceutical technology
Physics
Precision engineering, watch making
Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)
Silicon
Skin
Solids
title Surface micromachined metallic microneedles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A22%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20micromachined%20metallic%20microneedles&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Chandrasekaran,%20S.&rft.date=2003-06-01&rft.volume=12&rft.issue=3&rft.spage=281&rft.epage=288&rft.pages=281-288&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2003.809951&rft_dat=%3Cproquest_RIE%3E28621280%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921487196&rft_id=info:pmid/&rft_ieee_id=1203766&rfr_iscdi=true