Surface micromachined metallic microneedles
In this paper, a method for fabricating surface micromachined, hollow, metallic microneedles is described. Single microneedle and multiple microneedle arrays with process enabled features such as complex tip geometries, micro barbs, mechanical penetration stops and multiple fluid output ports were f...
Gespeichert in:
Veröffentlicht in: | Journal of microelectromechanical systems 2003-06, Vol.12 (3), p.281-288 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 288 |
---|---|
container_issue | 3 |
container_start_page | 281 |
container_title | Journal of microelectromechanical systems |
container_volume | 12 |
creator | Chandrasekaran, S. Brazzle, J.D. Frazier, A.B. |
description | In this paper, a method for fabricating surface micromachined, hollow, metallic microneedles is described. Single microneedle and multiple microneedle arrays with process enabled features such as complex tip geometries, micro barbs, mechanical penetration stops and multiple fluid output ports were fabricated, packaged and characterized. The microneedles were fabricated using electroplated metals including palladium, palladium-cobalt alloys and nickel as structural materials. The microneedles were 200 mm-2.0 cm in length with a cross-section of 70-200 /spl mu/m in width and 75-120 /spl mu/m in height, with a wall thickness of 30-35 /spl mu/m. The microneedle arrays were typically 9.0 mm in width and 3.0 mm in height with between 3 and 17 needles per array. Using water as the fluid medium, the average inlet pressure was found to be 30.0 KPa for a flow rate of 1000 /spl mu/L/h and 106 KPa for a flow rate 4000 /spl mu/L/h. |
doi_str_mv | 10.1109/JMEMS.2003.809951 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671388189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1203766</ieee_id><sourcerecordid>28621280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-22a17e2eb8e641ed73efb2ea8d86f56c061ad2f01aba1e38aa5af5a19c6f325b3</originalsourceid><addsrcrecordid>eNqN0ctKAzEUBuBBFKzVBxA3RVAEmZqTTC6zlFJvtLiorsNp5gSnzEzrpF349qZOoeBCXCUk3_kh-ZPkHNgQgOV3L9PxdDbkjImhYXku4SDpQZ5BykCaw7hnUqcapD5OTkJYMAZZZlQvuZ1tWo-OBnXp2mWN7qNsqBjUtMaqKl133BAVFYXT5MhjFehst_aT94fx2-gpnbw-Po_uJ6nLQK5TzhE0cZobUhlQoQX5OSc0hVFeKscUYME9A5wjkDCIEr1EyJ3ygsu56CfXXe6qXX5uKKxtXQZHVYUNLTfBcmPAcKP_ARUHbliEN39CUBrENjWP9PIXXSw3bRPfa3MOmdGQq4igQ_FzQmjJ21Vb1th-WWB224f96cNu-7BdH3HmaheMwWHlW2xcGfaDMVoKZqK76FxJRPtrzoRWSnwD1-6SXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921487196</pqid></control><display><type>article</type><title>Surface micromachined metallic microneedles</title><source>IEEE Electronic Library (IEL)</source><creator>Chandrasekaran, S. ; Brazzle, J.D. ; Frazier, A.B.</creator><creatorcontrib>Chandrasekaran, S. ; Brazzle, J.D. ; Frazier, A.B.</creatorcontrib><description>In this paper, a method for fabricating surface micromachined, hollow, metallic microneedles is described. Single microneedle and multiple microneedle arrays with process enabled features such as complex tip geometries, micro barbs, mechanical penetration stops and multiple fluid output ports were fabricated, packaged and characterized. The microneedles were fabricated using electroplated metals including palladium, palladium-cobalt alloys and nickel as structural materials. The microneedles were 200 mm-2.0 cm in length with a cross-section of 70-200 /spl mu/m in width and 75-120 /spl mu/m in height, with a wall thickness of 30-35 /spl mu/m. The microneedle arrays were typically 9.0 mm in width and 3.0 mm in height with between 3 and 17 needles per array. Using water as the fluid medium, the average inlet pressure was found to be 30.0 KPa for a flow rate of 1000 /spl mu/L/h and 106 KPa for a flow rate 4000 /spl mu/L/h.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2003.809951</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Alloys ; Applied sciences ; Arrays ; Biological and medical sciences ; Cross-disciplinary physics: materials science; rheology ; Drug delivery ; Etching ; Exact sciences and technology ; Fabrication ; Flow rate ; Fluid dynamics ; Fluid flow ; Fluids ; Geometry ; Materials science ; Mechanical engineering. Machine design ; Medical sciences ; Micromachining ; Micromechanics ; Miscellaneous ; Nanoscale materials and structures: fabrication and characterization ; Needles ; Packaging ; Pharmaceutical technology ; Physics ; Precision engineering, watch making ; Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) ; Silicon ; Skin ; Solids</subject><ispartof>Journal of microelectromechanical systems, 2003-06, Vol.12 (3), p.281-288</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-22a17e2eb8e641ed73efb2ea8d86f56c061ad2f01aba1e38aa5af5a19c6f325b3</citedby><cites>FETCH-LOGICAL-c415t-22a17e2eb8e641ed73efb2ea8d86f56c061ad2f01aba1e38aa5af5a19c6f325b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1203766$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1203766$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14875308$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chandrasekaran, S.</creatorcontrib><creatorcontrib>Brazzle, J.D.</creatorcontrib><creatorcontrib>Frazier, A.B.</creatorcontrib><title>Surface micromachined metallic microneedles</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>In this paper, a method for fabricating surface micromachined, hollow, metallic microneedles is described. Single microneedle and multiple microneedle arrays with process enabled features such as complex tip geometries, micro barbs, mechanical penetration stops and multiple fluid output ports were fabricated, packaged and characterized. The microneedles were fabricated using electroplated metals including palladium, palladium-cobalt alloys and nickel as structural materials. The microneedles were 200 mm-2.0 cm in length with a cross-section of 70-200 /spl mu/m in width and 75-120 /spl mu/m in height, with a wall thickness of 30-35 /spl mu/m. The microneedle arrays were typically 9.0 mm in width and 3.0 mm in height with between 3 and 17 needles per array. Using water as the fluid medium, the average inlet pressure was found to be 30.0 KPa for a flow rate of 1000 /spl mu/L/h and 106 KPa for a flow rate 4000 /spl mu/L/h.</description><subject>Alloys</subject><subject>Applied sciences</subject><subject>Arrays</subject><subject>Biological and medical sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Drug delivery</subject><subject>Etching</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>Flow rate</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Geometry</subject><subject>Materials science</subject><subject>Mechanical engineering. Machine design</subject><subject>Medical sciences</subject><subject>Micromachining</subject><subject>Micromechanics</subject><subject>Miscellaneous</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Needles</subject><subject>Packaging</subject><subject>Pharmaceutical technology</subject><subject>Physics</subject><subject>Precision engineering, watch making</subject><subject>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</subject><subject>Silicon</subject><subject>Skin</subject><subject>Solids</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0ctKAzEUBuBBFKzVBxA3RVAEmZqTTC6zlFJvtLiorsNp5gSnzEzrpF349qZOoeBCXCUk3_kh-ZPkHNgQgOV3L9PxdDbkjImhYXku4SDpQZ5BykCaw7hnUqcapD5OTkJYMAZZZlQvuZ1tWo-OBnXp2mWN7qNsqBjUtMaqKl133BAVFYXT5MhjFehst_aT94fx2-gpnbw-Po_uJ6nLQK5TzhE0cZobUhlQoQX5OSc0hVFeKscUYME9A5wjkDCIEr1EyJ3ygsu56CfXXe6qXX5uKKxtXQZHVYUNLTfBcmPAcKP_ARUHbliEN39CUBrENjWP9PIXXSw3bRPfa3MOmdGQq4igQ_FzQmjJ21Vb1th-WWB224f96cNu-7BdH3HmaheMwWHlW2xcGfaDMVoKZqK76FxJRPtrzoRWSnwD1-6SXA</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>Chandrasekaran, S.</creator><creator>Brazzle, J.D.</creator><creator>Frazier, A.B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20030601</creationdate><title>Surface micromachined metallic microneedles</title><author>Chandrasekaran, S. ; Brazzle, J.D. ; Frazier, A.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-22a17e2eb8e641ed73efb2ea8d86f56c061ad2f01aba1e38aa5af5a19c6f325b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Alloys</topic><topic>Applied sciences</topic><topic>Arrays</topic><topic>Biological and medical sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Drug delivery</topic><topic>Etching</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>Flow rate</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Geometry</topic><topic>Materials science</topic><topic>Mechanical engineering. Machine design</topic><topic>Medical sciences</topic><topic>Micromachining</topic><topic>Micromechanics</topic><topic>Miscellaneous</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Needles</topic><topic>Packaging</topic><topic>Pharmaceutical technology</topic><topic>Physics</topic><topic>Precision engineering, watch making</topic><topic>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</topic><topic>Silicon</topic><topic>Skin</topic><topic>Solids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandrasekaran, S.</creatorcontrib><creatorcontrib>Brazzle, J.D.</creatorcontrib><creatorcontrib>Frazier, A.B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chandrasekaran, S.</au><au>Brazzle, J.D.</au><au>Frazier, A.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface micromachined metallic microneedles</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2003-06-01</date><risdate>2003</risdate><volume>12</volume><issue>3</issue><spage>281</spage><epage>288</epage><pages>281-288</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>In this paper, a method for fabricating surface micromachined, hollow, metallic microneedles is described. Single microneedle and multiple microneedle arrays with process enabled features such as complex tip geometries, micro barbs, mechanical penetration stops and multiple fluid output ports were fabricated, packaged and characterized. The microneedles were fabricated using electroplated metals including palladium, palladium-cobalt alloys and nickel as structural materials. The microneedles were 200 mm-2.0 cm in length with a cross-section of 70-200 /spl mu/m in width and 75-120 /spl mu/m in height, with a wall thickness of 30-35 /spl mu/m. The microneedle arrays were typically 9.0 mm in width and 3.0 mm in height with between 3 and 17 needles per array. Using water as the fluid medium, the average inlet pressure was found to be 30.0 KPa for a flow rate of 1000 /spl mu/L/h and 106 KPa for a flow rate 4000 /spl mu/L/h.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2003.809951</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7157 |
ispartof | Journal of microelectromechanical systems, 2003-06, Vol.12 (3), p.281-288 |
issn | 1057-7157 1941-0158 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671388189 |
source | IEEE Electronic Library (IEL) |
subjects | Alloys Applied sciences Arrays Biological and medical sciences Cross-disciplinary physics: materials science rheology Drug delivery Etching Exact sciences and technology Fabrication Flow rate Fluid dynamics Fluid flow Fluids Geometry Materials science Mechanical engineering. Machine design Medical sciences Micromachining Micromechanics Miscellaneous Nanoscale materials and structures: fabrication and characterization Needles Packaging Pharmaceutical technology Physics Precision engineering, watch making Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) Silicon Skin Solids |
title | Surface micromachined metallic microneedles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A22%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20micromachined%20metallic%20microneedles&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Chandrasekaran,%20S.&rft.date=2003-06-01&rft.volume=12&rft.issue=3&rft.spage=281&rft.epage=288&rft.pages=281-288&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2003.809951&rft_dat=%3Cproquest_RIE%3E28621280%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921487196&rft_id=info:pmid/&rft_ieee_id=1203766&rfr_iscdi=true |