Optimal Design of ICPT Systems Applied to Electric Vehicle Battery Charge

Although the use of inductively coupled power transfer (ICPT) systems for electric vehicle battery charge presents numerous advantages, a detailed design method cannot be found in the literature. This paper shows the steps to follow in the optimized design of an ICPT system and the results obtained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2009-06, Vol.56 (6), p.2140-2149
Hauptverfasser: Sallan, J., Villa, J.L., Llombart, A., Sanz, J.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2149
container_issue 6
container_start_page 2140
container_title IEEE transactions on industrial electronics (1982)
container_volume 56
creator Sallan, J.
Villa, J.L.
Llombart, A.
Sanz, J.F.
description Although the use of inductively coupled power transfer (ICPT) systems for electric vehicle battery charge presents numerous advantages, a detailed design method cannot be found in the literature. This paper shows the steps to follow in the optimized design of an ICPT system and the results obtained in their application to the four most common compensation topologies, pointing out the best one in terms of minimum copper mass and proper stability conditions. A new design factor K D is proposed to select the optimum configuration for each topology. Finally, the theoretical results are validated on a 2-kW prototype with a 15-cm air gap between coils.
doi_str_mv 10.1109/TIE.2009.2015359
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671386795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4787071</ieee_id><sourcerecordid>869849714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-470f693eeee1be9f3328abdacb64015a24efb98762e5ab00ee2fe1b6d9e9173b3</originalsourceid><addsrcrecordid>eNp9kT1PwzAQhi0EEqWwI7FYLLAE7MSfYwkFIlUqEoXVctJLmyptgu0O_fe4asXAwA13y3Mf770IXVPyQCnRj7Ni_JASomOiPOP6BA0o5zLRmqlTNCCpVAkhTJyjC-9XhFDGKR-gYtqHZm1b_Ay-WWxwV-Mif5_hj50PsPZ41PdtA3McOjxuoQquqfAXLJuqBfxkQwC3w_nSugVcorPath6ujnWIPl_Gs_wtmUxfi3w0SSpG0pAwSWqhM4hBS9B1lqXKlnNblYLFy23KoC61kiIFbktCANI6kmKuQVOZldkQ3R3m9q773oIPZt34CtrWbqDbeqOEVkxLyiJ5_y9JhaSZElLziN7-QVfd1m2iDqO4ZJypTEaIHKDKdd47qE3v4u_czlBi9iaYaILZm2COJsSWm0NLE_X-4kwqSeLuH0M6gS4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857454837</pqid></control><display><type>article</type><title>Optimal Design of ICPT Systems Applied to Electric Vehicle Battery Charge</title><source>IEEE Electronic Library (IEL)</source><creator>Sallan, J. ; Villa, J.L. ; Llombart, A. ; Sanz, J.F.</creator><creatorcontrib>Sallan, J. ; Villa, J.L. ; Llombart, A. ; Sanz, J.F.</creatorcontrib><description>Although the use of inductively coupled power transfer (ICPT) systems for electric vehicle battery charge presents numerous advantages, a detailed design method cannot be found in the literature. This paper shows the steps to follow in the optimized design of an ICPT system and the results obtained in their application to the four most common compensation topologies, pointing out the best one in terms of minimum copper mass and proper stability conditions. A new design factor K D is proposed to select the optimum configuration for each topology. Finally, the theoretical results are validated on a 2-kW prototype with a 15-cm air gap between coils.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2009.2015359</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Batteries ; Battery ; Bifurcation phenomena ; Capacitors ; Charge ; Charge (electric) ; Circuit topology ; Coils ; compensation topologies ; contactless energy transfer ; Copper ; Design engineering ; Design optimization ; Electric batteries ; Electric charge ; Electric vehicles ; electric vehicles (EVs) ; Inductance ; inductive power transfer ; Optimization ; Stability ; Topology ; Voltage</subject><ispartof>IEEE transactions on industrial electronics (1982), 2009-06, Vol.56 (6), p.2140-2149</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-470f693eeee1be9f3328abdacb64015a24efb98762e5ab00ee2fe1b6d9e9173b3</citedby><cites>FETCH-LOGICAL-c402t-470f693eeee1be9f3328abdacb64015a24efb98762e5ab00ee2fe1b6d9e9173b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4787071$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4787071$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sallan, J.</creatorcontrib><creatorcontrib>Villa, J.L.</creatorcontrib><creatorcontrib>Llombart, A.</creatorcontrib><creatorcontrib>Sanz, J.F.</creatorcontrib><title>Optimal Design of ICPT Systems Applied to Electric Vehicle Battery Charge</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Although the use of inductively coupled power transfer (ICPT) systems for electric vehicle battery charge presents numerous advantages, a detailed design method cannot be found in the literature. This paper shows the steps to follow in the optimized design of an ICPT system and the results obtained in their application to the four most common compensation topologies, pointing out the best one in terms of minimum copper mass and proper stability conditions. A new design factor K D is proposed to select the optimum configuration for each topology. Finally, the theoretical results are validated on a 2-kW prototype with a 15-cm air gap between coils.</description><subject>Batteries</subject><subject>Battery</subject><subject>Bifurcation phenomena</subject><subject>Capacitors</subject><subject>Charge</subject><subject>Charge (electric)</subject><subject>Circuit topology</subject><subject>Coils</subject><subject>compensation topologies</subject><subject>contactless energy transfer</subject><subject>Copper</subject><subject>Design engineering</subject><subject>Design optimization</subject><subject>Electric batteries</subject><subject>Electric charge</subject><subject>Electric vehicles</subject><subject>electric vehicles (EVs)</subject><subject>Inductance</subject><subject>inductive power transfer</subject><subject>Optimization</subject><subject>Stability</subject><subject>Topology</subject><subject>Voltage</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kT1PwzAQhi0EEqWwI7FYLLAE7MSfYwkFIlUqEoXVctJLmyptgu0O_fe4asXAwA13y3Mf770IXVPyQCnRj7Ni_JASomOiPOP6BA0o5zLRmqlTNCCpVAkhTJyjC-9XhFDGKR-gYtqHZm1b_Ay-WWxwV-Mif5_hj50PsPZ41PdtA3McOjxuoQquqfAXLJuqBfxkQwC3w_nSugVcorPath6ujnWIPl_Gs_wtmUxfi3w0SSpG0pAwSWqhM4hBS9B1lqXKlnNblYLFy23KoC61kiIFbktCANI6kmKuQVOZldkQ3R3m9q773oIPZt34CtrWbqDbeqOEVkxLyiJ5_y9JhaSZElLziN7-QVfd1m2iDqO4ZJypTEaIHKDKdd47qE3v4u_czlBi9iaYaILZm2COJsSWm0NLE_X-4kwqSeLuH0M6gS4</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Sallan, J.</creator><creator>Villa, J.L.</creator><creator>Llombart, A.</creator><creator>Sanz, J.F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090601</creationdate><title>Optimal Design of ICPT Systems Applied to Electric Vehicle Battery Charge</title><author>Sallan, J. ; Villa, J.L. ; Llombart, A. ; Sanz, J.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-470f693eeee1be9f3328abdacb64015a24efb98762e5ab00ee2fe1b6d9e9173b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Batteries</topic><topic>Battery</topic><topic>Bifurcation phenomena</topic><topic>Capacitors</topic><topic>Charge</topic><topic>Charge (electric)</topic><topic>Circuit topology</topic><topic>Coils</topic><topic>compensation topologies</topic><topic>contactless energy transfer</topic><topic>Copper</topic><topic>Design engineering</topic><topic>Design optimization</topic><topic>Electric batteries</topic><topic>Electric charge</topic><topic>Electric vehicles</topic><topic>electric vehicles (EVs)</topic><topic>Inductance</topic><topic>inductive power transfer</topic><topic>Optimization</topic><topic>Stability</topic><topic>Topology</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sallan, J.</creatorcontrib><creatorcontrib>Villa, J.L.</creatorcontrib><creatorcontrib>Llombart, A.</creatorcontrib><creatorcontrib>Sanz, J.F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sallan, J.</au><au>Villa, J.L.</au><au>Llombart, A.</au><au>Sanz, J.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Design of ICPT Systems Applied to Electric Vehicle Battery Charge</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>56</volume><issue>6</issue><spage>2140</spage><epage>2149</epage><pages>2140-2149</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Although the use of inductively coupled power transfer (ICPT) systems for electric vehicle battery charge presents numerous advantages, a detailed design method cannot be found in the literature. This paper shows the steps to follow in the optimized design of an ICPT system and the results obtained in their application to the four most common compensation topologies, pointing out the best one in terms of minimum copper mass and proper stability conditions. A new design factor K D is proposed to select the optimum configuration for each topology. Finally, the theoretical results are validated on a 2-kW prototype with a 15-cm air gap between coils.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2009.2015359</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2009-06, Vol.56 (6), p.2140-2149
issn 0278-0046
1557-9948
language eng
recordid cdi_proquest_miscellaneous_1671386795
source IEEE Electronic Library (IEL)
subjects Batteries
Battery
Bifurcation phenomena
Capacitors
Charge
Charge (electric)
Circuit topology
Coils
compensation topologies
contactless energy transfer
Copper
Design engineering
Design optimization
Electric batteries
Electric charge
Electric vehicles
electric vehicles (EVs)
Inductance
inductive power transfer
Optimization
Stability
Topology
Voltage
title Optimal Design of ICPT Systems Applied to Electric Vehicle Battery Charge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T07%3A08%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Design%20of%20ICPT%20Systems%20Applied%20to%20Electric%20Vehicle%20Battery%20Charge&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Sallan,%20J.&rft.date=2009-06-01&rft.volume=56&rft.issue=6&rft.spage=2140&rft.epage=2149&rft.pages=2140-2149&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2009.2015359&rft_dat=%3Cproquest_RIE%3E869849714%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857454837&rft_id=info:pmid/&rft_ieee_id=4787071&rfr_iscdi=true