Optimal Design of ICPT Systems Applied to Electric Vehicle Battery Charge
Although the use of inductively coupled power transfer (ICPT) systems for electric vehicle battery charge presents numerous advantages, a detailed design method cannot be found in the literature. This paper shows the steps to follow in the optimized design of an ICPT system and the results obtained...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2009-06, Vol.56 (6), p.2140-2149 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2149 |
---|---|
container_issue | 6 |
container_start_page | 2140 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 56 |
creator | Sallan, J. Villa, J.L. Llombart, A. Sanz, J.F. |
description | Although the use of inductively coupled power transfer (ICPT) systems for electric vehicle battery charge presents numerous advantages, a detailed design method cannot be found in the literature. This paper shows the steps to follow in the optimized design of an ICPT system and the results obtained in their application to the four most common compensation topologies, pointing out the best one in terms of minimum copper mass and proper stability conditions. A new design factor K D is proposed to select the optimum configuration for each topology. Finally, the theoretical results are validated on a 2-kW prototype with a 15-cm air gap between coils. |
doi_str_mv | 10.1109/TIE.2009.2015359 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671386795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4787071</ieee_id><sourcerecordid>869849714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-470f693eeee1be9f3328abdacb64015a24efb98762e5ab00ee2fe1b6d9e9173b3</originalsourceid><addsrcrecordid>eNp9kT1PwzAQhi0EEqWwI7FYLLAE7MSfYwkFIlUqEoXVctJLmyptgu0O_fe4asXAwA13y3Mf770IXVPyQCnRj7Ni_JASomOiPOP6BA0o5zLRmqlTNCCpVAkhTJyjC-9XhFDGKR-gYtqHZm1b_Ay-WWxwV-Mif5_hj50PsPZ41PdtA3McOjxuoQquqfAXLJuqBfxkQwC3w_nSugVcorPath6ujnWIPl_Gs_wtmUxfi3w0SSpG0pAwSWqhM4hBS9B1lqXKlnNblYLFy23KoC61kiIFbktCANI6kmKuQVOZldkQ3R3m9q773oIPZt34CtrWbqDbeqOEVkxLyiJ5_y9JhaSZElLziN7-QVfd1m2iDqO4ZJypTEaIHKDKdd47qE3v4u_czlBi9iaYaILZm2COJsSWm0NLE_X-4kwqSeLuH0M6gS4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857454837</pqid></control><display><type>article</type><title>Optimal Design of ICPT Systems Applied to Electric Vehicle Battery Charge</title><source>IEEE Electronic Library (IEL)</source><creator>Sallan, J. ; Villa, J.L. ; Llombart, A. ; Sanz, J.F.</creator><creatorcontrib>Sallan, J. ; Villa, J.L. ; Llombart, A. ; Sanz, J.F.</creatorcontrib><description>Although the use of inductively coupled power transfer (ICPT) systems for electric vehicle battery charge presents numerous advantages, a detailed design method cannot be found in the literature. This paper shows the steps to follow in the optimized design of an ICPT system and the results obtained in their application to the four most common compensation topologies, pointing out the best one in terms of minimum copper mass and proper stability conditions. A new design factor K D is proposed to select the optimum configuration for each topology. Finally, the theoretical results are validated on a 2-kW prototype with a 15-cm air gap between coils.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2009.2015359</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Batteries ; Battery ; Bifurcation phenomena ; Capacitors ; Charge ; Charge (electric) ; Circuit topology ; Coils ; compensation topologies ; contactless energy transfer ; Copper ; Design engineering ; Design optimization ; Electric batteries ; Electric charge ; Electric vehicles ; electric vehicles (EVs) ; Inductance ; inductive power transfer ; Optimization ; Stability ; Topology ; Voltage</subject><ispartof>IEEE transactions on industrial electronics (1982), 2009-06, Vol.56 (6), p.2140-2149</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-470f693eeee1be9f3328abdacb64015a24efb98762e5ab00ee2fe1b6d9e9173b3</citedby><cites>FETCH-LOGICAL-c402t-470f693eeee1be9f3328abdacb64015a24efb98762e5ab00ee2fe1b6d9e9173b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4787071$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4787071$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sallan, J.</creatorcontrib><creatorcontrib>Villa, J.L.</creatorcontrib><creatorcontrib>Llombart, A.</creatorcontrib><creatorcontrib>Sanz, J.F.</creatorcontrib><title>Optimal Design of ICPT Systems Applied to Electric Vehicle Battery Charge</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Although the use of inductively coupled power transfer (ICPT) systems for electric vehicle battery charge presents numerous advantages, a detailed design method cannot be found in the literature. This paper shows the steps to follow in the optimized design of an ICPT system and the results obtained in their application to the four most common compensation topologies, pointing out the best one in terms of minimum copper mass and proper stability conditions. A new design factor K D is proposed to select the optimum configuration for each topology. Finally, the theoretical results are validated on a 2-kW prototype with a 15-cm air gap between coils.</description><subject>Batteries</subject><subject>Battery</subject><subject>Bifurcation phenomena</subject><subject>Capacitors</subject><subject>Charge</subject><subject>Charge (electric)</subject><subject>Circuit topology</subject><subject>Coils</subject><subject>compensation topologies</subject><subject>contactless energy transfer</subject><subject>Copper</subject><subject>Design engineering</subject><subject>Design optimization</subject><subject>Electric batteries</subject><subject>Electric charge</subject><subject>Electric vehicles</subject><subject>electric vehicles (EVs)</subject><subject>Inductance</subject><subject>inductive power transfer</subject><subject>Optimization</subject><subject>Stability</subject><subject>Topology</subject><subject>Voltage</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kT1PwzAQhi0EEqWwI7FYLLAE7MSfYwkFIlUqEoXVctJLmyptgu0O_fe4asXAwA13y3Mf770IXVPyQCnRj7Ni_JASomOiPOP6BA0o5zLRmqlTNCCpVAkhTJyjC-9XhFDGKR-gYtqHZm1b_Ay-WWxwV-Mif5_hj50PsPZ41PdtA3McOjxuoQquqfAXLJuqBfxkQwC3w_nSugVcorPath6ujnWIPl_Gs_wtmUxfi3w0SSpG0pAwSWqhM4hBS9B1lqXKlnNblYLFy23KoC61kiIFbktCANI6kmKuQVOZldkQ3R3m9q773oIPZt34CtrWbqDbeqOEVkxLyiJ5_y9JhaSZElLziN7-QVfd1m2iDqO4ZJypTEaIHKDKdd47qE3v4u_czlBi9iaYaILZm2COJsSWm0NLE_X-4kwqSeLuH0M6gS4</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Sallan, J.</creator><creator>Villa, J.L.</creator><creator>Llombart, A.</creator><creator>Sanz, J.F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090601</creationdate><title>Optimal Design of ICPT Systems Applied to Electric Vehicle Battery Charge</title><author>Sallan, J. ; Villa, J.L. ; Llombart, A. ; Sanz, J.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-470f693eeee1be9f3328abdacb64015a24efb98762e5ab00ee2fe1b6d9e9173b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Batteries</topic><topic>Battery</topic><topic>Bifurcation phenomena</topic><topic>Capacitors</topic><topic>Charge</topic><topic>Charge (electric)</topic><topic>Circuit topology</topic><topic>Coils</topic><topic>compensation topologies</topic><topic>contactless energy transfer</topic><topic>Copper</topic><topic>Design engineering</topic><topic>Design optimization</topic><topic>Electric batteries</topic><topic>Electric charge</topic><topic>Electric vehicles</topic><topic>electric vehicles (EVs)</topic><topic>Inductance</topic><topic>inductive power transfer</topic><topic>Optimization</topic><topic>Stability</topic><topic>Topology</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sallan, J.</creatorcontrib><creatorcontrib>Villa, J.L.</creatorcontrib><creatorcontrib>Llombart, A.</creatorcontrib><creatorcontrib>Sanz, J.F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sallan, J.</au><au>Villa, J.L.</au><au>Llombart, A.</au><au>Sanz, J.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Design of ICPT Systems Applied to Electric Vehicle Battery Charge</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>56</volume><issue>6</issue><spage>2140</spage><epage>2149</epage><pages>2140-2149</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Although the use of inductively coupled power transfer (ICPT) systems for electric vehicle battery charge presents numerous advantages, a detailed design method cannot be found in the literature. This paper shows the steps to follow in the optimized design of an ICPT system and the results obtained in their application to the four most common compensation topologies, pointing out the best one in terms of minimum copper mass and proper stability conditions. A new design factor K D is proposed to select the optimum configuration for each topology. Finally, the theoretical results are validated on a 2-kW prototype with a 15-cm air gap between coils.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2009.2015359</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2009-06, Vol.56 (6), p.2140-2149 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671386795 |
source | IEEE Electronic Library (IEL) |
subjects | Batteries Battery Bifurcation phenomena Capacitors Charge Charge (electric) Circuit topology Coils compensation topologies contactless energy transfer Copper Design engineering Design optimization Electric batteries Electric charge Electric vehicles electric vehicles (EVs) Inductance inductive power transfer Optimization Stability Topology Voltage |
title | Optimal Design of ICPT Systems Applied to Electric Vehicle Battery Charge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T07%3A08%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Design%20of%20ICPT%20Systems%20Applied%20to%20Electric%20Vehicle%20Battery%20Charge&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Sallan,%20J.&rft.date=2009-06-01&rft.volume=56&rft.issue=6&rft.spage=2140&rft.epage=2149&rft.pages=2140-2149&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2009.2015359&rft_dat=%3Cproquest_RIE%3E869849714%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857454837&rft_id=info:pmid/&rft_ieee_id=4787071&rfr_iscdi=true |