Operator context scanning to support high segmentation rates for real time license plate recognition
Introducing high definition videos and images in object recognition has provided new possibilities in the field of intelligent image processing and pattern recognition. However, due to the large amount of information that needs to be processed, the computational costs are high, making the HD systems...
Gespeichert in:
Veröffentlicht in: | Pattern recognition 2010-11, Vol.43 (11), p.3866-3878 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3878 |
---|---|
container_issue | 11 |
container_start_page | 3866 |
container_title | Pattern recognition |
container_volume | 43 |
creator | Giannoukos, Ioannis Anagnostopoulos, Christos-Nikolaos Loumos, Vassili Kayafas, Eleftherios |
description | Introducing high definition videos and images in object recognition has provided new possibilities in the field of intelligent image processing and pattern recognition. However, due to the large amount of information that needs to be processed, the computational costs are high, making the HD systems slow. To this end, a novel algorithm applied to sliding window analysis, namely Operator Context Scanning (OCS), is proposed and tested on the license plate detection module of a License Plate Recognition (LPR) system. In the LPR system, the OCS algorithm is applied on the Sliding Concentric Windows pixel operator and has been found to improve the LPR system’s performance in terms of speed by rapidly scanning input images focusing only on regions of interest, while at the same time it does not reduce the system effectiveness. Additionally, a novel characteristic is presented, namely, the context of the image based on a sliding windows operator. This characteristic helps to quickly categorize the environmental conditions upon which the input image was taken. The algorithm is tested on a data set that includes images of various resolutions, acquired under a variety of environmental conditions. |
doi_str_mv | 10.1016/j.patcog.2010.06.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671386756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031320310002724</els_id><sourcerecordid>1671386756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-5758779cca818d1829e701e5a330888549050842f9660b9745b006392c1b8d883</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKvfwEMugpetk81ukr0IIv4DwYueQ5qdrSnbZE1S0W9vSsWjp4GZ9-bN_Ag5Z7BgwMTVejGZbMNqUUNpgVgAqAMyY0ryqmVNfUhmAJxVvAZ-TE5SWgMwWQYz0r9MGE0OkdrgM35lmqzx3vkVzYGm7TSFmOm7W73ThKsN-myyC54WDyY6FF9EM9LsNkhHZ9EnpNNYhqVfLvJupz4lR4MZE5791jl5u797vX2snl8enm5vnivLRZerVrZKys5ao5jqmao7lMCwNZyDUqptOmhBNfXQCQHLTjbtEkDwrrZsqXql-Jxc7vdOMXxsMWW9ccniOBqPYZs0E5JxJWQrirTZS20MKUUc9BTdxsRvzUDvoOq13kPVO6gahC5Qi-3iN8EUTuMQjbcu_XlrDrLehczJ9V6H5d1Ph1En69Bb7F3hknUf3P9BPwhkjrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671386756</pqid></control><display><type>article</type><title>Operator context scanning to support high segmentation rates for real time license plate recognition</title><source>Elsevier ScienceDirect Journals</source><creator>Giannoukos, Ioannis ; Anagnostopoulos, Christos-Nikolaos ; Loumos, Vassili ; Kayafas, Eleftherios</creator><creatorcontrib>Giannoukos, Ioannis ; Anagnostopoulos, Christos-Nikolaos ; Loumos, Vassili ; Kayafas, Eleftherios</creatorcontrib><description>Introducing high definition videos and images in object recognition has provided new possibilities in the field of intelligent image processing and pattern recognition. However, due to the large amount of information that needs to be processed, the computational costs are high, making the HD systems slow. To this end, a novel algorithm applied to sliding window analysis, namely Operator Context Scanning (OCS), is proposed and tested on the license plate detection module of a License Plate Recognition (LPR) system. In the LPR system, the OCS algorithm is applied on the Sliding Concentric Windows pixel operator and has been found to improve the LPR system’s performance in terms of speed by rapidly scanning input images focusing only on regions of interest, while at the same time it does not reduce the system effectiveness. Additionally, a novel characteristic is presented, namely, the context of the image based on a sliding windows operator. This characteristic helps to quickly categorize the environmental conditions upon which the input image was taken. The algorithm is tested on a data set that includes images of various resolutions, acquired under a variety of environmental conditions.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/j.patcog.2010.06.008</identifier><identifier>CODEN: PTNRA8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; High resolution image processing ; Image processing ; Information, signal and communications theory ; License Plate Recognition ; Licenses ; Operator Context Scanning algorithm ; Operators ; Pattern recognition ; Recognition ; Scanning ; Signal and communications theory ; Signal processing ; Signal, noise ; Sliding ; Sliding windows analysis ; Telecommunications and information theory</subject><ispartof>Pattern recognition, 2010-11, Vol.43 (11), p.3866-3878</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-5758779cca818d1829e701e5a330888549050842f9660b9745b006392c1b8d883</citedby><cites>FETCH-LOGICAL-c369t-5758779cca818d1829e701e5a330888549050842f9660b9745b006392c1b8d883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0031320310002724$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23072671$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Giannoukos, Ioannis</creatorcontrib><creatorcontrib>Anagnostopoulos, Christos-Nikolaos</creatorcontrib><creatorcontrib>Loumos, Vassili</creatorcontrib><creatorcontrib>Kayafas, Eleftherios</creatorcontrib><title>Operator context scanning to support high segmentation rates for real time license plate recognition</title><title>Pattern recognition</title><description>Introducing high definition videos and images in object recognition has provided new possibilities in the field of intelligent image processing and pattern recognition. However, due to the large amount of information that needs to be processed, the computational costs are high, making the HD systems slow. To this end, a novel algorithm applied to sliding window analysis, namely Operator Context Scanning (OCS), is proposed and tested on the license plate detection module of a License Plate Recognition (LPR) system. In the LPR system, the OCS algorithm is applied on the Sliding Concentric Windows pixel operator and has been found to improve the LPR system’s performance in terms of speed by rapidly scanning input images focusing only on regions of interest, while at the same time it does not reduce the system effectiveness. Additionally, a novel characteristic is presented, namely, the context of the image based on a sliding windows operator. This characteristic helps to quickly categorize the environmental conditions upon which the input image was taken. The algorithm is tested on a data set that includes images of various resolutions, acquired under a variety of environmental conditions.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>High resolution image processing</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>License Plate Recognition</subject><subject>Licenses</subject><subject>Operator Context Scanning algorithm</subject><subject>Operators</subject><subject>Pattern recognition</subject><subject>Recognition</subject><subject>Scanning</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Sliding</subject><subject>Sliding windows analysis</subject><subject>Telecommunications and information theory</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKvfwEMugpetk81ukr0IIv4DwYueQ5qdrSnbZE1S0W9vSsWjp4GZ9-bN_Ag5Z7BgwMTVejGZbMNqUUNpgVgAqAMyY0ryqmVNfUhmAJxVvAZ-TE5SWgMwWQYz0r9MGE0OkdrgM35lmqzx3vkVzYGm7TSFmOm7W73ThKsN-myyC54WDyY6FF9EM9LsNkhHZ9EnpNNYhqVfLvJupz4lR4MZE5791jl5u797vX2snl8enm5vnivLRZerVrZKys5ao5jqmao7lMCwNZyDUqptOmhBNfXQCQHLTjbtEkDwrrZsqXql-Jxc7vdOMXxsMWW9ccniOBqPYZs0E5JxJWQrirTZS20MKUUc9BTdxsRvzUDvoOq13kPVO6gahC5Qi-3iN8EUTuMQjbcu_XlrDrLehczJ9V6H5d1Ph1En69Bb7F3hknUf3P9BPwhkjrw</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Giannoukos, Ioannis</creator><creator>Anagnostopoulos, Christos-Nikolaos</creator><creator>Loumos, Vassili</creator><creator>Kayafas, Eleftherios</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101101</creationdate><title>Operator context scanning to support high segmentation rates for real time license plate recognition</title><author>Giannoukos, Ioannis ; Anagnostopoulos, Christos-Nikolaos ; Loumos, Vassili ; Kayafas, Eleftherios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-5758779cca818d1829e701e5a330888549050842f9660b9745b006392c1b8d883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>High resolution image processing</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>License Plate Recognition</topic><topic>Licenses</topic><topic>Operator Context Scanning algorithm</topic><topic>Operators</topic><topic>Pattern recognition</topic><topic>Recognition</topic><topic>Scanning</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Sliding</topic><topic>Sliding windows analysis</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giannoukos, Ioannis</creatorcontrib><creatorcontrib>Anagnostopoulos, Christos-Nikolaos</creatorcontrib><creatorcontrib>Loumos, Vassili</creatorcontrib><creatorcontrib>Kayafas, Eleftherios</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giannoukos, Ioannis</au><au>Anagnostopoulos, Christos-Nikolaos</au><au>Loumos, Vassili</au><au>Kayafas, Eleftherios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Operator context scanning to support high segmentation rates for real time license plate recognition</atitle><jtitle>Pattern recognition</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>43</volume><issue>11</issue><spage>3866</spage><epage>3878</epage><pages>3866-3878</pages><issn>0031-3203</issn><eissn>1873-5142</eissn><coden>PTNRA8</coden><abstract>Introducing high definition videos and images in object recognition has provided new possibilities in the field of intelligent image processing and pattern recognition. However, due to the large amount of information that needs to be processed, the computational costs are high, making the HD systems slow. To this end, a novel algorithm applied to sliding window analysis, namely Operator Context Scanning (OCS), is proposed and tested on the license plate detection module of a License Plate Recognition (LPR) system. In the LPR system, the OCS algorithm is applied on the Sliding Concentric Windows pixel operator and has been found to improve the LPR system’s performance in terms of speed by rapidly scanning input images focusing only on regions of interest, while at the same time it does not reduce the system effectiveness. Additionally, a novel characteristic is presented, namely, the context of the image based on a sliding windows operator. This characteristic helps to quickly categorize the environmental conditions upon which the input image was taken. The algorithm is tested on a data set that includes images of various resolutions, acquired under a variety of environmental conditions.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2010.06.008</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-3203 |
ispartof | Pattern recognition, 2010-11, Vol.43 (11), p.3866-3878 |
issn | 0031-3203 1873-5142 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671386756 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Applied sciences Detection, estimation, filtering, equalization, prediction Exact sciences and technology High resolution image processing Image processing Information, signal and communications theory License Plate Recognition Licenses Operator Context Scanning algorithm Operators Pattern recognition Recognition Scanning Signal and communications theory Signal processing Signal, noise Sliding Sliding windows analysis Telecommunications and information theory |
title | Operator context scanning to support high segmentation rates for real time license plate recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Operator%20context%20scanning%20to%20support%20high%20segmentation%20rates%20for%20real%20time%20license%20plate%20recognition&rft.jtitle=Pattern%20recognition&rft.au=Giannoukos,%20Ioannis&rft.date=2010-11-01&rft.volume=43&rft.issue=11&rft.spage=3866&rft.epage=3878&rft.pages=3866-3878&rft.issn=0031-3203&rft.eissn=1873-5142&rft.coden=PTNRA8&rft_id=info:doi/10.1016/j.patcog.2010.06.008&rft_dat=%3Cproquest_cross%3E1671386756%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671386756&rft_id=info:pmid/&rft_els_id=S0031320310002724&rfr_iscdi=true |