Operator context scanning to support high segmentation rates for real time license plate recognition

Introducing high definition videos and images in object recognition has provided new possibilities in the field of intelligent image processing and pattern recognition. However, due to the large amount of information that needs to be processed, the computational costs are high, making the HD systems...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition 2010-11, Vol.43 (11), p.3866-3878
Hauptverfasser: Giannoukos, Ioannis, Anagnostopoulos, Christos-Nikolaos, Loumos, Vassili, Kayafas, Eleftherios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3878
container_issue 11
container_start_page 3866
container_title Pattern recognition
container_volume 43
creator Giannoukos, Ioannis
Anagnostopoulos, Christos-Nikolaos
Loumos, Vassili
Kayafas, Eleftherios
description Introducing high definition videos and images in object recognition has provided new possibilities in the field of intelligent image processing and pattern recognition. However, due to the large amount of information that needs to be processed, the computational costs are high, making the HD systems slow. To this end, a novel algorithm applied to sliding window analysis, namely Operator Context Scanning (OCS), is proposed and tested on the license plate detection module of a License Plate Recognition (LPR) system. In the LPR system, the OCS algorithm is applied on the Sliding Concentric Windows pixel operator and has been found to improve the LPR system’s performance in terms of speed by rapidly scanning input images focusing only on regions of interest, while at the same time it does not reduce the system effectiveness. Additionally, a novel characteristic is presented, namely, the context of the image based on a sliding windows operator. This characteristic helps to quickly categorize the environmental conditions upon which the input image was taken. The algorithm is tested on a data set that includes images of various resolutions, acquired under a variety of environmental conditions.
doi_str_mv 10.1016/j.patcog.2010.06.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671386756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031320310002724</els_id><sourcerecordid>1671386756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-5758779cca818d1829e701e5a330888549050842f9660b9745b006392c1b8d883</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKvfwEMugpetk81ukr0IIv4DwYueQ5qdrSnbZE1S0W9vSsWjp4GZ9-bN_Ag5Z7BgwMTVejGZbMNqUUNpgVgAqAMyY0ryqmVNfUhmAJxVvAZ-TE5SWgMwWQYz0r9MGE0OkdrgM35lmqzx3vkVzYGm7TSFmOm7W73ThKsN-myyC54WDyY6FF9EM9LsNkhHZ9EnpNNYhqVfLvJupz4lR4MZE5791jl5u797vX2snl8enm5vnivLRZerVrZKys5ao5jqmao7lMCwNZyDUqptOmhBNfXQCQHLTjbtEkDwrrZsqXql-Jxc7vdOMXxsMWW9ccniOBqPYZs0E5JxJWQrirTZS20MKUUc9BTdxsRvzUDvoOq13kPVO6gahC5Qi-3iN8EUTuMQjbcu_XlrDrLehczJ9V6H5d1Ph1En69Bb7F3hknUf3P9BPwhkjrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671386756</pqid></control><display><type>article</type><title>Operator context scanning to support high segmentation rates for real time license plate recognition</title><source>Elsevier ScienceDirect Journals</source><creator>Giannoukos, Ioannis ; Anagnostopoulos, Christos-Nikolaos ; Loumos, Vassili ; Kayafas, Eleftherios</creator><creatorcontrib>Giannoukos, Ioannis ; Anagnostopoulos, Christos-Nikolaos ; Loumos, Vassili ; Kayafas, Eleftherios</creatorcontrib><description>Introducing high definition videos and images in object recognition has provided new possibilities in the field of intelligent image processing and pattern recognition. However, due to the large amount of information that needs to be processed, the computational costs are high, making the HD systems slow. To this end, a novel algorithm applied to sliding window analysis, namely Operator Context Scanning (OCS), is proposed and tested on the license plate detection module of a License Plate Recognition (LPR) system. In the LPR system, the OCS algorithm is applied on the Sliding Concentric Windows pixel operator and has been found to improve the LPR system’s performance in terms of speed by rapidly scanning input images focusing only on regions of interest, while at the same time it does not reduce the system effectiveness. Additionally, a novel characteristic is presented, namely, the context of the image based on a sliding windows operator. This characteristic helps to quickly categorize the environmental conditions upon which the input image was taken. The algorithm is tested on a data set that includes images of various resolutions, acquired under a variety of environmental conditions.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/j.patcog.2010.06.008</identifier><identifier>CODEN: PTNRA8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; High resolution image processing ; Image processing ; Information, signal and communications theory ; License Plate Recognition ; Licenses ; Operator Context Scanning algorithm ; Operators ; Pattern recognition ; Recognition ; Scanning ; Signal and communications theory ; Signal processing ; Signal, noise ; Sliding ; Sliding windows analysis ; Telecommunications and information theory</subject><ispartof>Pattern recognition, 2010-11, Vol.43 (11), p.3866-3878</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-5758779cca818d1829e701e5a330888549050842f9660b9745b006392c1b8d883</citedby><cites>FETCH-LOGICAL-c369t-5758779cca818d1829e701e5a330888549050842f9660b9745b006392c1b8d883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0031320310002724$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23072671$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Giannoukos, Ioannis</creatorcontrib><creatorcontrib>Anagnostopoulos, Christos-Nikolaos</creatorcontrib><creatorcontrib>Loumos, Vassili</creatorcontrib><creatorcontrib>Kayafas, Eleftherios</creatorcontrib><title>Operator context scanning to support high segmentation rates for real time license plate recognition</title><title>Pattern recognition</title><description>Introducing high definition videos and images in object recognition has provided new possibilities in the field of intelligent image processing and pattern recognition. However, due to the large amount of information that needs to be processed, the computational costs are high, making the HD systems slow. To this end, a novel algorithm applied to sliding window analysis, namely Operator Context Scanning (OCS), is proposed and tested on the license plate detection module of a License Plate Recognition (LPR) system. In the LPR system, the OCS algorithm is applied on the Sliding Concentric Windows pixel operator and has been found to improve the LPR system’s performance in terms of speed by rapidly scanning input images focusing only on regions of interest, while at the same time it does not reduce the system effectiveness. Additionally, a novel characteristic is presented, namely, the context of the image based on a sliding windows operator. This characteristic helps to quickly categorize the environmental conditions upon which the input image was taken. The algorithm is tested on a data set that includes images of various resolutions, acquired under a variety of environmental conditions.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>High resolution image processing</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>License Plate Recognition</subject><subject>Licenses</subject><subject>Operator Context Scanning algorithm</subject><subject>Operators</subject><subject>Pattern recognition</subject><subject>Recognition</subject><subject>Scanning</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Sliding</subject><subject>Sliding windows analysis</subject><subject>Telecommunications and information theory</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKvfwEMugpetk81ukr0IIv4DwYueQ5qdrSnbZE1S0W9vSsWjp4GZ9-bN_Ag5Z7BgwMTVejGZbMNqUUNpgVgAqAMyY0ryqmVNfUhmAJxVvAZ-TE5SWgMwWQYz0r9MGE0OkdrgM35lmqzx3vkVzYGm7TSFmOm7W73ThKsN-myyC54WDyY6FF9EM9LsNkhHZ9EnpNNYhqVfLvJupz4lR4MZE5791jl5u797vX2snl8enm5vnivLRZerVrZKys5ao5jqmao7lMCwNZyDUqptOmhBNfXQCQHLTjbtEkDwrrZsqXql-Jxc7vdOMXxsMWW9ccniOBqPYZs0E5JxJWQrirTZS20MKUUc9BTdxsRvzUDvoOq13kPVO6gahC5Qi-3iN8EUTuMQjbcu_XlrDrLehczJ9V6H5d1Ph1En69Bb7F3hknUf3P9BPwhkjrw</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Giannoukos, Ioannis</creator><creator>Anagnostopoulos, Christos-Nikolaos</creator><creator>Loumos, Vassili</creator><creator>Kayafas, Eleftherios</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101101</creationdate><title>Operator context scanning to support high segmentation rates for real time license plate recognition</title><author>Giannoukos, Ioannis ; Anagnostopoulos, Christos-Nikolaos ; Loumos, Vassili ; Kayafas, Eleftherios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-5758779cca818d1829e701e5a330888549050842f9660b9745b006392c1b8d883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>High resolution image processing</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>License Plate Recognition</topic><topic>Licenses</topic><topic>Operator Context Scanning algorithm</topic><topic>Operators</topic><topic>Pattern recognition</topic><topic>Recognition</topic><topic>Scanning</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Sliding</topic><topic>Sliding windows analysis</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giannoukos, Ioannis</creatorcontrib><creatorcontrib>Anagnostopoulos, Christos-Nikolaos</creatorcontrib><creatorcontrib>Loumos, Vassili</creatorcontrib><creatorcontrib>Kayafas, Eleftherios</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giannoukos, Ioannis</au><au>Anagnostopoulos, Christos-Nikolaos</au><au>Loumos, Vassili</au><au>Kayafas, Eleftherios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Operator context scanning to support high segmentation rates for real time license plate recognition</atitle><jtitle>Pattern recognition</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>43</volume><issue>11</issue><spage>3866</spage><epage>3878</epage><pages>3866-3878</pages><issn>0031-3203</issn><eissn>1873-5142</eissn><coden>PTNRA8</coden><abstract>Introducing high definition videos and images in object recognition has provided new possibilities in the field of intelligent image processing and pattern recognition. However, due to the large amount of information that needs to be processed, the computational costs are high, making the HD systems slow. To this end, a novel algorithm applied to sliding window analysis, namely Operator Context Scanning (OCS), is proposed and tested on the license plate detection module of a License Plate Recognition (LPR) system. In the LPR system, the OCS algorithm is applied on the Sliding Concentric Windows pixel operator and has been found to improve the LPR system’s performance in terms of speed by rapidly scanning input images focusing only on regions of interest, while at the same time it does not reduce the system effectiveness. Additionally, a novel characteristic is presented, namely, the context of the image based on a sliding windows operator. This characteristic helps to quickly categorize the environmental conditions upon which the input image was taken. The algorithm is tested on a data set that includes images of various resolutions, acquired under a variety of environmental conditions.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2010.06.008</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-3203
ispartof Pattern recognition, 2010-11, Vol.43 (11), p.3866-3878
issn 0031-3203
1873-5142
language eng
recordid cdi_proquest_miscellaneous_1671386756
source Elsevier ScienceDirect Journals
subjects Algorithms
Applied sciences
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
High resolution image processing
Image processing
Information, signal and communications theory
License Plate Recognition
Licenses
Operator Context Scanning algorithm
Operators
Pattern recognition
Recognition
Scanning
Signal and communications theory
Signal processing
Signal, noise
Sliding
Sliding windows analysis
Telecommunications and information theory
title Operator context scanning to support high segmentation rates for real time license plate recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Operator%20context%20scanning%20to%20support%20high%20segmentation%20rates%20for%20real%20time%20license%20plate%20recognition&rft.jtitle=Pattern%20recognition&rft.au=Giannoukos,%20Ioannis&rft.date=2010-11-01&rft.volume=43&rft.issue=11&rft.spage=3866&rft.epage=3878&rft.pages=3866-3878&rft.issn=0031-3203&rft.eissn=1873-5142&rft.coden=PTNRA8&rft_id=info:doi/10.1016/j.patcog.2010.06.008&rft_dat=%3Cproquest_cross%3E1671386756%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671386756&rft_id=info:pmid/&rft_els_id=S0031320310002724&rfr_iscdi=true