Practical Routing in Delay-Tolerant Networks
Delay-tolerant networks (DTNs) have the potential to interconnect devices in regions that current networking technology cannot reach. To realize the DTN vision, routes must be found over multiple unreliable, intermittently-connected hops. In this paper we present a practical routing protocol that us...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on mobile computing 2007-08, Vol.6 (8), p.943-959 |
---|---|
Hauptverfasser: | , , , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 959 |
---|---|
container_issue | 8 |
container_start_page | 943 |
container_title | IEEE transactions on mobile computing |
container_volume | 6 |
creator | Jones, E.P.C. Li, L. Schmidtke, J.K. Ward, P.A.S. |
description | Delay-tolerant networks (DTNs) have the potential to interconnect devices in regions that current networking technology cannot reach. To realize the DTN vision, routes must be found over multiple unreliable, intermittently-connected hops. In this paper we present a practical routing protocol that uses only observed information about the network. We designed a metric that estimates the average waiting time for each potential next hop. This learned topology information is distributed using a link-state routing protocol, where the link-state packets are "flooded" using epidemic routing. The routing is recomputed each time connections are established, allowing messages to take advantage of unpredictable contacts. A message is forwarded if the topology suggests that the connected node is "closer" to the destination than the current node. We demonstrate through simulation that our protocol provides performance similar to that of schemes that have global knowledge of the network topology, yet without requiring that knowledge. Further, it requires significantly less resources than the alternative, epidemic routing, suggesting that our approach scales better with the number of messages in the network. This performance is achieved with minimal protocol overhead for networks of approximately 100 nodes. |
doi_str_mv | 10.1109/TMC.2007.1016 |
format | Magazinearticle |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671386594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4253574</ieee_id><sourcerecordid>34470624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-eccf5ab2ed28875795c28c470af30a1f7c718644a9783a5b9894a3c96d1918e23</originalsourceid><addsrcrecordid>eNp90UlLAzEUB_AgCtbq0ZOXIrgcnJqXPUepK9QFqeeQphmZOs7UZAbptzdDi4KHnhLILy8v74_QIeAhANaXk8fRkGAsh4BBbKEecK4yLATe7vZUZEAo3UV7Mc4xBqW17KGLl2BdUzhbDl7rtimq90FRDa59aZfZpC59sFUzePLNdx0-4j7ayW0Z_cF67aO325vJ6D4bP989jK7GmePAm8w7l3M7JX5GlJJcau6Ickxim1NsIZdOghKMWS0VtXyqlWaWOi1moEF5QvvobFV3Eeqv1sfGfBbR-bK0la_baDSmggoCOMnTjZKy9KwgLMHzjRCEBKoE1x09_kfndRuq9GGTuuacY6oTylbIhTrG4HOzCMWnDUsD2HRpmJSG6dIwXRrJn6yL2piGnae5uiL-XVIaOE4t9NHRyhXe-99jRjjlktEfTHWO7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>864555039</pqid></control><display><type>magazinearticle</type><title>Practical Routing in Delay-Tolerant Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Jones, E.P.C. ; Li, L. ; Schmidtke, J.K. ; Ward, P.A.S.</creator><creatorcontrib>Jones, E.P.C. ; Li, L. ; Schmidtke, J.K. ; Ward, P.A.S.</creatorcontrib><description>Delay-tolerant networks (DTNs) have the potential to interconnect devices in regions that current networking technology cannot reach. To realize the DTN vision, routes must be found over multiple unreliable, intermittently-connected hops. In this paper we present a practical routing protocol that uses only observed information about the network. We designed a metric that estimates the average waiting time for each potential next hop. This learned topology information is distributed using a link-state routing protocol, where the link-state packets are "flooded" using epidemic routing. The routing is recomputed each time connections are established, allowing messages to take advantage of unpredictable contacts. A message is forwarded if the topology suggests that the connected node is "closer" to the destination than the current node. We demonstrate through simulation that our protocol provides performance similar to that of schemes that have global knowledge of the network topology, yet without requiring that knowledge. Further, it requires significantly less resources than the alternative, epidemic routing, suggesting that our approach scales better with the number of messages in the network. This performance is achieved with minimal protocol overhead for networks of approximately 100 nodes.</description><identifier>ISSN: 1536-1233</identifier><identifier>EISSN: 1558-0660</identifier><identifier>DOI: 10.1109/TMC.2007.1016</identifier><identifier>CODEN: ITMCCJ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Access methods and protocols, osi model ; Applied sciences ; Computer networks ; Costs ; Delay ; Disruption tolerant networking ; Epidemics ; Exact sciences and technology ; Government ; Hops ; Joints ; Messages ; Mobile communication ; mobile communication systems ; Monitoring ; Network topology ; Networks ; nomadic computing ; Operation, maintenance, reliability ; Organization and planning of networks (techniques and equipments) ; Relays ; Routing (telecommunications) ; Routing protocols ; Systems, networks and services of telecommunications ; Telecommunication network topology ; Telecommunications ; Telecommunications and information theory ; Teleprocessing networks. Isdn ; Topology ; Transmission and modulation (techniques and equipments)</subject><ispartof>IEEE transactions on mobile computing, 2007-08, Vol.6 (8), p.943-959</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-eccf5ab2ed28875795c28c470af30a1f7c718644a9783a5b9894a3c96d1918e23</citedby><cites>FETCH-LOGICAL-c515t-eccf5ab2ed28875795c28c470af30a1f7c718644a9783a5b9894a3c96d1918e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4253574$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>780,784,796,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4253574$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18915071$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jones, E.P.C.</creatorcontrib><creatorcontrib>Li, L.</creatorcontrib><creatorcontrib>Schmidtke, J.K.</creatorcontrib><creatorcontrib>Ward, P.A.S.</creatorcontrib><title>Practical Routing in Delay-Tolerant Networks</title><title>IEEE transactions on mobile computing</title><addtitle>TMC</addtitle><description>Delay-tolerant networks (DTNs) have the potential to interconnect devices in regions that current networking technology cannot reach. To realize the DTN vision, routes must be found over multiple unreliable, intermittently-connected hops. In this paper we present a practical routing protocol that uses only observed information about the network. We designed a metric that estimates the average waiting time for each potential next hop. This learned topology information is distributed using a link-state routing protocol, where the link-state packets are "flooded" using epidemic routing. The routing is recomputed each time connections are established, allowing messages to take advantage of unpredictable contacts. A message is forwarded if the topology suggests that the connected node is "closer" to the destination than the current node. We demonstrate through simulation that our protocol provides performance similar to that of schemes that have global knowledge of the network topology, yet without requiring that knowledge. Further, it requires significantly less resources than the alternative, epidemic routing, suggesting that our approach scales better with the number of messages in the network. This performance is achieved with minimal protocol overhead for networks of approximately 100 nodes.</description><subject>Access methods and protocols, osi model</subject><subject>Applied sciences</subject><subject>Computer networks</subject><subject>Costs</subject><subject>Delay</subject><subject>Disruption tolerant networking</subject><subject>Epidemics</subject><subject>Exact sciences and technology</subject><subject>Government</subject><subject>Hops</subject><subject>Joints</subject><subject>Messages</subject><subject>Mobile communication</subject><subject>mobile communication systems</subject><subject>Monitoring</subject><subject>Network topology</subject><subject>Networks</subject><subject>nomadic computing</subject><subject>Operation, maintenance, reliability</subject><subject>Organization and planning of networks (techniques and equipments)</subject><subject>Relays</subject><subject>Routing (telecommunications)</subject><subject>Routing protocols</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunication network topology</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Teleprocessing networks. Isdn</subject><subject>Topology</subject><subject>Transmission and modulation (techniques and equipments)</subject><issn>1536-1233</issn><issn>1558-0660</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2007</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNp90UlLAzEUB_AgCtbq0ZOXIrgcnJqXPUepK9QFqeeQphmZOs7UZAbptzdDi4KHnhLILy8v74_QIeAhANaXk8fRkGAsh4BBbKEecK4yLATe7vZUZEAo3UV7Mc4xBqW17KGLl2BdUzhbDl7rtimq90FRDa59aZfZpC59sFUzePLNdx0-4j7ayW0Z_cF67aO325vJ6D4bP989jK7GmePAm8w7l3M7JX5GlJJcau6Ickxim1NsIZdOghKMWS0VtXyqlWaWOi1moEF5QvvobFV3Eeqv1sfGfBbR-bK0la_baDSmggoCOMnTjZKy9KwgLMHzjRCEBKoE1x09_kfndRuq9GGTuuacY6oTylbIhTrG4HOzCMWnDUsD2HRpmJSG6dIwXRrJn6yL2piGnae5uiL-XVIaOE4t9NHRyhXe-99jRjjlktEfTHWO7A</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Jones, E.P.C.</creator><creator>Li, L.</creator><creator>Schmidtke, J.K.</creator><creator>Ward, P.A.S.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070801</creationdate><title>Practical Routing in Delay-Tolerant Networks</title><author>Jones, E.P.C. ; Li, L. ; Schmidtke, J.K. ; Ward, P.A.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-eccf5ab2ed28875795c28c470af30a1f7c718644a9783a5b9894a3c96d1918e23</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Access methods and protocols, osi model</topic><topic>Applied sciences</topic><topic>Computer networks</topic><topic>Costs</topic><topic>Delay</topic><topic>Disruption tolerant networking</topic><topic>Epidemics</topic><topic>Exact sciences and technology</topic><topic>Government</topic><topic>Hops</topic><topic>Joints</topic><topic>Messages</topic><topic>Mobile communication</topic><topic>mobile communication systems</topic><topic>Monitoring</topic><topic>Network topology</topic><topic>Networks</topic><topic>nomadic computing</topic><topic>Operation, maintenance, reliability</topic><topic>Organization and planning of networks (techniques and equipments)</topic><topic>Relays</topic><topic>Routing (telecommunications)</topic><topic>Routing protocols</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunication network topology</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Teleprocessing networks. Isdn</topic><topic>Topology</topic><topic>Transmission and modulation (techniques and equipments)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, E.P.C.</creatorcontrib><creatorcontrib>Li, L.</creatorcontrib><creatorcontrib>Schmidtke, J.K.</creatorcontrib><creatorcontrib>Ward, P.A.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jones, E.P.C.</au><au>Li, L.</au><au>Schmidtke, J.K.</au><au>Ward, P.A.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Practical Routing in Delay-Tolerant Networks</atitle><jtitle>IEEE transactions on mobile computing</jtitle><stitle>TMC</stitle><date>2007-08-01</date><risdate>2007</risdate><volume>6</volume><issue>8</issue><spage>943</spage><epage>959</epage><pages>943-959</pages><issn>1536-1233</issn><eissn>1558-0660</eissn><coden>ITMCCJ</coden><abstract>Delay-tolerant networks (DTNs) have the potential to interconnect devices in regions that current networking technology cannot reach. To realize the DTN vision, routes must be found over multiple unreliable, intermittently-connected hops. In this paper we present a practical routing protocol that uses only observed information about the network. We designed a metric that estimates the average waiting time for each potential next hop. This learned topology information is distributed using a link-state routing protocol, where the link-state packets are "flooded" using epidemic routing. The routing is recomputed each time connections are established, allowing messages to take advantage of unpredictable contacts. A message is forwarded if the topology suggests that the connected node is "closer" to the destination than the current node. We demonstrate through simulation that our protocol provides performance similar to that of schemes that have global knowledge of the network topology, yet without requiring that knowledge. Further, it requires significantly less resources than the alternative, epidemic routing, suggesting that our approach scales better with the number of messages in the network. This performance is achieved with minimal protocol overhead for networks of approximately 100 nodes.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMC.2007.1016</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1233 |
ispartof | IEEE transactions on mobile computing, 2007-08, Vol.6 (8), p.943-959 |
issn | 1536-1233 1558-0660 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671386594 |
source | IEEE Electronic Library (IEL) |
subjects | Access methods and protocols, osi model Applied sciences Computer networks Costs Delay Disruption tolerant networking Epidemics Exact sciences and technology Government Hops Joints Messages Mobile communication mobile communication systems Monitoring Network topology Networks nomadic computing Operation, maintenance, reliability Organization and planning of networks (techniques and equipments) Relays Routing (telecommunications) Routing protocols Systems, networks and services of telecommunications Telecommunication network topology Telecommunications Telecommunications and information theory Teleprocessing networks. Isdn Topology Transmission and modulation (techniques and equipments) |
title | Practical Routing in Delay-Tolerant Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A27%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Practical%20Routing%20in%20Delay-Tolerant%20Networks&rft.jtitle=IEEE%20transactions%20on%20mobile%20computing&rft.au=Jones,%20E.P.C.&rft.date=2007-08-01&rft.volume=6&rft.issue=8&rft.spage=943&rft.epage=959&rft.pages=943-959&rft.issn=1536-1233&rft.eissn=1558-0660&rft.coden=ITMCCJ&rft_id=info:doi/10.1109/TMC.2007.1016&rft_dat=%3Cproquest_RIE%3E34470624%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864555039&rft_id=info:pmid/&rft_ieee_id=4253574&rfr_iscdi=true |