Practical Routing in Delay-Tolerant Networks

Delay-tolerant networks (DTNs) have the potential to interconnect devices in regions that current networking technology cannot reach. To realize the DTN vision, routes must be found over multiple unreliable, intermittently-connected hops. In this paper we present a practical routing protocol that us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on mobile computing 2007-08, Vol.6 (8), p.943-959
Hauptverfasser: Jones, E.P.C., Li, L., Schmidtke, J.K., Ward, P.A.S.
Format: Magazinearticle
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 959
container_issue 8
container_start_page 943
container_title IEEE transactions on mobile computing
container_volume 6
creator Jones, E.P.C.
Li, L.
Schmidtke, J.K.
Ward, P.A.S.
description Delay-tolerant networks (DTNs) have the potential to interconnect devices in regions that current networking technology cannot reach. To realize the DTN vision, routes must be found over multiple unreliable, intermittently-connected hops. In this paper we present a practical routing protocol that uses only observed information about the network. We designed a metric that estimates the average waiting time for each potential next hop. This learned topology information is distributed using a link-state routing protocol, where the link-state packets are "flooded" using epidemic routing. The routing is recomputed each time connections are established, allowing messages to take advantage of unpredictable contacts. A message is forwarded if the topology suggests that the connected node is "closer" to the destination than the current node. We demonstrate through simulation that our protocol provides performance similar to that of schemes that have global knowledge of the network topology, yet without requiring that knowledge. Further, it requires significantly less resources than the alternative, epidemic routing, suggesting that our approach scales better with the number of messages in the network. This performance is achieved with minimal protocol overhead for networks of approximately 100 nodes.
doi_str_mv 10.1109/TMC.2007.1016
format Magazinearticle
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671386594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4253574</ieee_id><sourcerecordid>34470624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-eccf5ab2ed28875795c28c470af30a1f7c718644a9783a5b9894a3c96d1918e23</originalsourceid><addsrcrecordid>eNp90UlLAzEUB_AgCtbq0ZOXIrgcnJqXPUepK9QFqeeQphmZOs7UZAbptzdDi4KHnhLILy8v74_QIeAhANaXk8fRkGAsh4BBbKEecK4yLATe7vZUZEAo3UV7Mc4xBqW17KGLl2BdUzhbDl7rtimq90FRDa59aZfZpC59sFUzePLNdx0-4j7ayW0Z_cF67aO325vJ6D4bP989jK7GmePAm8w7l3M7JX5GlJJcau6Ickxim1NsIZdOghKMWS0VtXyqlWaWOi1moEF5QvvobFV3Eeqv1sfGfBbR-bK0la_baDSmggoCOMnTjZKy9KwgLMHzjRCEBKoE1x09_kfndRuq9GGTuuacY6oTylbIhTrG4HOzCMWnDUsD2HRpmJSG6dIwXRrJn6yL2piGnae5uiL-XVIaOE4t9NHRyhXe-99jRjjlktEfTHWO7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>864555039</pqid></control><display><type>magazinearticle</type><title>Practical Routing in Delay-Tolerant Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Jones, E.P.C. ; Li, L. ; Schmidtke, J.K. ; Ward, P.A.S.</creator><creatorcontrib>Jones, E.P.C. ; Li, L. ; Schmidtke, J.K. ; Ward, P.A.S.</creatorcontrib><description>Delay-tolerant networks (DTNs) have the potential to interconnect devices in regions that current networking technology cannot reach. To realize the DTN vision, routes must be found over multiple unreliable, intermittently-connected hops. In this paper we present a practical routing protocol that uses only observed information about the network. We designed a metric that estimates the average waiting time for each potential next hop. This learned topology information is distributed using a link-state routing protocol, where the link-state packets are "flooded" using epidemic routing. The routing is recomputed each time connections are established, allowing messages to take advantage of unpredictable contacts. A message is forwarded if the topology suggests that the connected node is "closer" to the destination than the current node. We demonstrate through simulation that our protocol provides performance similar to that of schemes that have global knowledge of the network topology, yet without requiring that knowledge. Further, it requires significantly less resources than the alternative, epidemic routing, suggesting that our approach scales better with the number of messages in the network. This performance is achieved with minimal protocol overhead for networks of approximately 100 nodes.</description><identifier>ISSN: 1536-1233</identifier><identifier>EISSN: 1558-0660</identifier><identifier>DOI: 10.1109/TMC.2007.1016</identifier><identifier>CODEN: ITMCCJ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Access methods and protocols, osi model ; Applied sciences ; Computer networks ; Costs ; Delay ; Disruption tolerant networking ; Epidemics ; Exact sciences and technology ; Government ; Hops ; Joints ; Messages ; Mobile communication ; mobile communication systems ; Monitoring ; Network topology ; Networks ; nomadic computing ; Operation, maintenance, reliability ; Organization and planning of networks (techniques and equipments) ; Relays ; Routing (telecommunications) ; Routing protocols ; Systems, networks and services of telecommunications ; Telecommunication network topology ; Telecommunications ; Telecommunications and information theory ; Teleprocessing networks. Isdn ; Topology ; Transmission and modulation (techniques and equipments)</subject><ispartof>IEEE transactions on mobile computing, 2007-08, Vol.6 (8), p.943-959</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-eccf5ab2ed28875795c28c470af30a1f7c718644a9783a5b9894a3c96d1918e23</citedby><cites>FETCH-LOGICAL-c515t-eccf5ab2ed28875795c28c470af30a1f7c718644a9783a5b9894a3c96d1918e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4253574$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>780,784,796,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4253574$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18915071$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jones, E.P.C.</creatorcontrib><creatorcontrib>Li, L.</creatorcontrib><creatorcontrib>Schmidtke, J.K.</creatorcontrib><creatorcontrib>Ward, P.A.S.</creatorcontrib><title>Practical Routing in Delay-Tolerant Networks</title><title>IEEE transactions on mobile computing</title><addtitle>TMC</addtitle><description>Delay-tolerant networks (DTNs) have the potential to interconnect devices in regions that current networking technology cannot reach. To realize the DTN vision, routes must be found over multiple unreliable, intermittently-connected hops. In this paper we present a practical routing protocol that uses only observed information about the network. We designed a metric that estimates the average waiting time for each potential next hop. This learned topology information is distributed using a link-state routing protocol, where the link-state packets are "flooded" using epidemic routing. The routing is recomputed each time connections are established, allowing messages to take advantage of unpredictable contacts. A message is forwarded if the topology suggests that the connected node is "closer" to the destination than the current node. We demonstrate through simulation that our protocol provides performance similar to that of schemes that have global knowledge of the network topology, yet without requiring that knowledge. Further, it requires significantly less resources than the alternative, epidemic routing, suggesting that our approach scales better with the number of messages in the network. This performance is achieved with minimal protocol overhead for networks of approximately 100 nodes.</description><subject>Access methods and protocols, osi model</subject><subject>Applied sciences</subject><subject>Computer networks</subject><subject>Costs</subject><subject>Delay</subject><subject>Disruption tolerant networking</subject><subject>Epidemics</subject><subject>Exact sciences and technology</subject><subject>Government</subject><subject>Hops</subject><subject>Joints</subject><subject>Messages</subject><subject>Mobile communication</subject><subject>mobile communication systems</subject><subject>Monitoring</subject><subject>Network topology</subject><subject>Networks</subject><subject>nomadic computing</subject><subject>Operation, maintenance, reliability</subject><subject>Organization and planning of networks (techniques and equipments)</subject><subject>Relays</subject><subject>Routing (telecommunications)</subject><subject>Routing protocols</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunication network topology</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Teleprocessing networks. Isdn</subject><subject>Topology</subject><subject>Transmission and modulation (techniques and equipments)</subject><issn>1536-1233</issn><issn>1558-0660</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2007</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNp90UlLAzEUB_AgCtbq0ZOXIrgcnJqXPUepK9QFqeeQphmZOs7UZAbptzdDi4KHnhLILy8v74_QIeAhANaXk8fRkGAsh4BBbKEecK4yLATe7vZUZEAo3UV7Mc4xBqW17KGLl2BdUzhbDl7rtimq90FRDa59aZfZpC59sFUzePLNdx0-4j7ayW0Z_cF67aO325vJ6D4bP989jK7GmePAm8w7l3M7JX5GlJJcau6Ickxim1NsIZdOghKMWS0VtXyqlWaWOi1moEF5QvvobFV3Eeqv1sfGfBbR-bK0la_baDSmggoCOMnTjZKy9KwgLMHzjRCEBKoE1x09_kfndRuq9GGTuuacY6oTylbIhTrG4HOzCMWnDUsD2HRpmJSG6dIwXRrJn6yL2piGnae5uiL-XVIaOE4t9NHRyhXe-99jRjjlktEfTHWO7A</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Jones, E.P.C.</creator><creator>Li, L.</creator><creator>Schmidtke, J.K.</creator><creator>Ward, P.A.S.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070801</creationdate><title>Practical Routing in Delay-Tolerant Networks</title><author>Jones, E.P.C. ; Li, L. ; Schmidtke, J.K. ; Ward, P.A.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-eccf5ab2ed28875795c28c470af30a1f7c718644a9783a5b9894a3c96d1918e23</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Access methods and protocols, osi model</topic><topic>Applied sciences</topic><topic>Computer networks</topic><topic>Costs</topic><topic>Delay</topic><topic>Disruption tolerant networking</topic><topic>Epidemics</topic><topic>Exact sciences and technology</topic><topic>Government</topic><topic>Hops</topic><topic>Joints</topic><topic>Messages</topic><topic>Mobile communication</topic><topic>mobile communication systems</topic><topic>Monitoring</topic><topic>Network topology</topic><topic>Networks</topic><topic>nomadic computing</topic><topic>Operation, maintenance, reliability</topic><topic>Organization and planning of networks (techniques and equipments)</topic><topic>Relays</topic><topic>Routing (telecommunications)</topic><topic>Routing protocols</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunication network topology</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Teleprocessing networks. Isdn</topic><topic>Topology</topic><topic>Transmission and modulation (techniques and equipments)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, E.P.C.</creatorcontrib><creatorcontrib>Li, L.</creatorcontrib><creatorcontrib>Schmidtke, J.K.</creatorcontrib><creatorcontrib>Ward, P.A.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jones, E.P.C.</au><au>Li, L.</au><au>Schmidtke, J.K.</au><au>Ward, P.A.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Practical Routing in Delay-Tolerant Networks</atitle><jtitle>IEEE transactions on mobile computing</jtitle><stitle>TMC</stitle><date>2007-08-01</date><risdate>2007</risdate><volume>6</volume><issue>8</issue><spage>943</spage><epage>959</epage><pages>943-959</pages><issn>1536-1233</issn><eissn>1558-0660</eissn><coden>ITMCCJ</coden><abstract>Delay-tolerant networks (DTNs) have the potential to interconnect devices in regions that current networking technology cannot reach. To realize the DTN vision, routes must be found over multiple unreliable, intermittently-connected hops. In this paper we present a practical routing protocol that uses only observed information about the network. We designed a metric that estimates the average waiting time for each potential next hop. This learned topology information is distributed using a link-state routing protocol, where the link-state packets are "flooded" using epidemic routing. The routing is recomputed each time connections are established, allowing messages to take advantage of unpredictable contacts. A message is forwarded if the topology suggests that the connected node is "closer" to the destination than the current node. We demonstrate through simulation that our protocol provides performance similar to that of schemes that have global knowledge of the network topology, yet without requiring that knowledge. Further, it requires significantly less resources than the alternative, epidemic routing, suggesting that our approach scales better with the number of messages in the network. This performance is achieved with minimal protocol overhead for networks of approximately 100 nodes.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMC.2007.1016</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1233
ispartof IEEE transactions on mobile computing, 2007-08, Vol.6 (8), p.943-959
issn 1536-1233
1558-0660
language eng
recordid cdi_proquest_miscellaneous_1671386594
source IEEE Electronic Library (IEL)
subjects Access methods and protocols, osi model
Applied sciences
Computer networks
Costs
Delay
Disruption tolerant networking
Epidemics
Exact sciences and technology
Government
Hops
Joints
Messages
Mobile communication
mobile communication systems
Monitoring
Network topology
Networks
nomadic computing
Operation, maintenance, reliability
Organization and planning of networks (techniques and equipments)
Relays
Routing (telecommunications)
Routing protocols
Systems, networks and services of telecommunications
Telecommunication network topology
Telecommunications
Telecommunications and information theory
Teleprocessing networks. Isdn
Topology
Transmission and modulation (techniques and equipments)
title Practical Routing in Delay-Tolerant Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A27%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Practical%20Routing%20in%20Delay-Tolerant%20Networks&rft.jtitle=IEEE%20transactions%20on%20mobile%20computing&rft.au=Jones,%20E.P.C.&rft.date=2007-08-01&rft.volume=6&rft.issue=8&rft.spage=943&rft.epage=959&rft.pages=943-959&rft.issn=1536-1233&rft.eissn=1558-0660&rft.coden=ITMCCJ&rft_id=info:doi/10.1109/TMC.2007.1016&rft_dat=%3Cproquest_RIE%3E34470624%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864555039&rft_id=info:pmid/&rft_ieee_id=4253574&rfr_iscdi=true