Analytic and numerical solutions of a Riccati differential equation with random coefficients

In this paper an analytic mean square solution of a Riccati equation with randomness in the coefficients and initial condition is given. This analytic solution can be expressed in an explicit form by using a general theorem for the chain rule for stochastic processes that can be written as a composi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2013-02, Vol.239, p.208-219
Hauptverfasser: Licea, J.A., Villafuerte, L., Chen-Charpentier, B.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 219
container_issue
container_start_page 208
container_title Journal of computational and applied mathematics
container_volume 239
creator Licea, J.A.
Villafuerte, L.
Chen-Charpentier, B.M.
description In this paper an analytic mean square solution of a Riccati equation with randomness in the coefficients and initial condition is given. This analytic solution can be expressed in an explicit form by using a general theorem for the chain rule for stochastic processes that can be written as a composition of a C1 function and a stochastic process belonging to the Banach space Lp, p≥1. Moreover, the exact mean and variance functions of the Riccati equation are computed and they are compared to those obtained by Monte Carlo, Differential Transform and Generalized Chaos Polynomial methods. Advantages and disadvantages of these methods are discussed for this equation.
doi_str_mv 10.1016/j.cam.2012.09.040
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671386136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037704271200413X</els_id><sourcerecordid>1671386136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-c42df06713585ed77f411f176e5fb75f035e08495f89b09aa99518a2d42cf5513</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD5-gLss3bTe2zZNgysRXzAgiO6EkElvMEPbjEmr-O9tGdeuzuY7B87H2AVCjoD11Ta3ps8LwCIHlUMFB2yFjVQZStkcshWUUmZQFfKYnaS0BYBaYbVi7zeD6X5Gb7kZWj5MPUVvTcdT6KbRhyHx4LjhL95aM3reeuco0jD6maHPySwM__bjB4_zQOi5DeSct35m0hk7cqZLdP6Xp-zt_u719jFbPz883d6sM1vKcsxsVbQOaomlaAS1UroK0aGsSbiNFA5KQdBUSrhGbUAZo5TAxhRtVVgnBJan7HK_u4vhc6I06t4nS11nBgpT0rhsNzWW9YziHrUxpBTJ6V30vYk_GkEvJvVWzyb1YlKD0rPJuXO979D84ctT1Gn5Z6n1keyo2-D_af8Ce_x8IA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671386136</pqid></control><display><type>article</type><title>Analytic and numerical solutions of a Riccati differential equation with random coefficients</title><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Licea, J.A. ; Villafuerte, L. ; Chen-Charpentier, B.M.</creator><creatorcontrib>Licea, J.A. ; Villafuerte, L. ; Chen-Charpentier, B.M.</creatorcontrib><description>In this paper an analytic mean square solution of a Riccati equation with randomness in the coefficients and initial condition is given. This analytic solution can be expressed in an explicit form by using a general theorem for the chain rule for stochastic processes that can be written as a composition of a C1 function and a stochastic process belonging to the Banach space Lp, p≥1. Moreover, the exact mean and variance functions of the Riccati equation are computed and they are compared to those obtained by Monte Carlo, Differential Transform and Generalized Chaos Polynomial methods. Advantages and disadvantages of these methods are discussed for this equation.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2012.09.040</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computer simulation ; Differential equations ; Exact solutions ; Mathematical analysis ; Mathematical models ; Mean square calculus ; Monte Carlo method ; Monte Carlo methods ; Polynomial chaos ; Random differential equations ; Riccati equation ; Stochastic processes</subject><ispartof>Journal of computational and applied mathematics, 2013-02, Vol.239, p.208-219</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-c42df06713585ed77f411f176e5fb75f035e08495f89b09aa99518a2d42cf5513</citedby><cites>FETCH-LOGICAL-c373t-c42df06713585ed77f411f176e5fb75f035e08495f89b09aa99518a2d42cf5513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cam.2012.09.040$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Licea, J.A.</creatorcontrib><creatorcontrib>Villafuerte, L.</creatorcontrib><creatorcontrib>Chen-Charpentier, B.M.</creatorcontrib><title>Analytic and numerical solutions of a Riccati differential equation with random coefficients</title><title>Journal of computational and applied mathematics</title><description>In this paper an analytic mean square solution of a Riccati equation with randomness in the coefficients and initial condition is given. This analytic solution can be expressed in an explicit form by using a general theorem for the chain rule for stochastic processes that can be written as a composition of a C1 function and a stochastic process belonging to the Banach space Lp, p≥1. Moreover, the exact mean and variance functions of the Riccati equation are computed and they are compared to those obtained by Monte Carlo, Differential Transform and Generalized Chaos Polynomial methods. Advantages and disadvantages of these methods are discussed for this equation.</description><subject>Computer simulation</subject><subject>Differential equations</subject><subject>Exact solutions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mean square calculus</subject><subject>Monte Carlo method</subject><subject>Monte Carlo methods</subject><subject>Polynomial chaos</subject><subject>Random differential equations</subject><subject>Riccati equation</subject><subject>Stochastic processes</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD5-gLss3bTe2zZNgysRXzAgiO6EkElvMEPbjEmr-O9tGdeuzuY7B87H2AVCjoD11Ta3ps8LwCIHlUMFB2yFjVQZStkcshWUUmZQFfKYnaS0BYBaYbVi7zeD6X5Gb7kZWj5MPUVvTcdT6KbRhyHx4LjhL95aM3reeuco0jD6maHPySwM__bjB4_zQOi5DeSct35m0hk7cqZLdP6Xp-zt_u719jFbPz883d6sM1vKcsxsVbQOaomlaAS1UroK0aGsSbiNFA5KQdBUSrhGbUAZo5TAxhRtVVgnBJan7HK_u4vhc6I06t4nS11nBgpT0rhsNzWW9YziHrUxpBTJ6V30vYk_GkEvJvVWzyb1YlKD0rPJuXO979D84ctT1Gn5Z6n1keyo2-D_af8Ce_x8IA</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Licea, J.A.</creator><creator>Villafuerte, L.</creator><creator>Chen-Charpentier, B.M.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130201</creationdate><title>Analytic and numerical solutions of a Riccati differential equation with random coefficients</title><author>Licea, J.A. ; Villafuerte, L. ; Chen-Charpentier, B.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-c42df06713585ed77f411f176e5fb75f035e08495f89b09aa99518a2d42cf5513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computer simulation</topic><topic>Differential equations</topic><topic>Exact solutions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mean square calculus</topic><topic>Monte Carlo method</topic><topic>Monte Carlo methods</topic><topic>Polynomial chaos</topic><topic>Random differential equations</topic><topic>Riccati equation</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Licea, J.A.</creatorcontrib><creatorcontrib>Villafuerte, L.</creatorcontrib><creatorcontrib>Chen-Charpentier, B.M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Licea, J.A.</au><au>Villafuerte, L.</au><au>Chen-Charpentier, B.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytic and numerical solutions of a Riccati differential equation with random coefficients</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>239</volume><spage>208</spage><epage>219</epage><pages>208-219</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>In this paper an analytic mean square solution of a Riccati equation with randomness in the coefficients and initial condition is given. This analytic solution can be expressed in an explicit form by using a general theorem for the chain rule for stochastic processes that can be written as a composition of a C1 function and a stochastic process belonging to the Banach space Lp, p≥1. Moreover, the exact mean and variance functions of the Riccati equation are computed and they are compared to those obtained by Monte Carlo, Differential Transform and Generalized Chaos Polynomial methods. Advantages and disadvantages of these methods are discussed for this equation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2012.09.040</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2013-02, Vol.239, p.208-219
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_1671386136
source Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Computer simulation
Differential equations
Exact solutions
Mathematical analysis
Mathematical models
Mean square calculus
Monte Carlo method
Monte Carlo methods
Polynomial chaos
Random differential equations
Riccati equation
Stochastic processes
title Analytic and numerical solutions of a Riccati differential equation with random coefficients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A28%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytic%20and%20numerical%20solutions%20of%20a%20Riccati%20differential%20equation%20with%20random%20coefficients&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Licea,%20J.A.&rft.date=2013-02-01&rft.volume=239&rft.spage=208&rft.epage=219&rft.pages=208-219&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2012.09.040&rft_dat=%3Cproquest_cross%3E1671386136%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671386136&rft_id=info:pmid/&rft_els_id=S037704271200413X&rfr_iscdi=true