From source to crust: Tracing magmatic evolution in a kimberlite and a melilitite using microsample geochemistry

We present an integrated microsampling trace element and isotopic study of primary minerals within the Jos kimberlite, Canada, in order to observe how different phases record progressive crustal interaction in the evolving kimberlite. Identification of the least contaminated phases provides the best...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth and planetary science letters 2010-10, Vol.299 (1), p.80-90
Hauptverfasser: Malarkey, J., Pearson, D.G., Kjarsgaard, B.A., Davidson, J.P., Nowell, G.M., Ottley, C.J., Stammer, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 90
container_issue 1
container_start_page 80
container_title Earth and planetary science letters
container_volume 299
creator Malarkey, J.
Pearson, D.G.
Kjarsgaard, B.A.
Davidson, J.P.
Nowell, G.M.
Ottley, C.J.
Stammer, J.
description We present an integrated microsampling trace element and isotopic study of primary minerals within the Jos kimberlite, Canada, in order to observe how different phases record progressive crustal interaction in the evolving kimberlite. Identification of the least contaminated phases provides the best information on kimberlite source geochemistry. We also carried out an analogue study on an olivine melilitite from Saltpetre Kop, South Africa, examining a similar mineral suite, with the addition of melilite. The two studies show that all phases except phenocryst olivine show some evidence of crustal modification. Perovskite has recently been used as a proxy for source isotope composition. Although perovskite may provide a better constraint on the isotopic composition of the kimberlite than the whole rock, it does not necessarily provide the best constraint on the source region. The lower initial 87Sr/ 86Sr ratio recorded by early crystallising phases in the kimberlite is similar to those of the low-Cr megacryst suite, strengthening the genetic relationship between kimberlite activity and megacryst formation.
doi_str_mv 10.1016/j.epsl.2010.08.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671375479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012821X10005303</els_id><sourcerecordid>1671375479</sourcerecordid><originalsourceid>FETCH-LOGICAL-a356t-a6a07310a765616a902d3f3bcd525cc5ba67c39ddbdd64e0ad7aea07f25b03103</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEuPjD3DKkUuH09B0Q1wQ4kuaxAUkbpGbeCOjbUqSIvHvSRlnTpZf-bFfv4ydCZgLEOpiO6chtvMSsgCLOZSwx2ZCLqoChHzbZzMAURaLUrwdsqMYtwCgKrWcseE--I5HPwZDPHluwhjTFX8JaFy_4R1uOkzOcPry7Zic77nrOfIP1zUUWpeIY2-z0FHrcjsJY_wlnQk-Yje0xDfkzTt1LqbwfcIO1thGOv2rx-z1_u7l9rFYPT883d6sCpSVSgUqhFoKwDr7FAqXUFq5lo2xVVkZUzWoaiOX1jbWqksCtDVSRtZl1UDm5DE73-0dgv8cKSad7xtqW-zJj1ELVQtZV5f1Mo-Wu9HJcQy01kNwHYZvLUBP8eqtnuLVU7waFjrHm6HrHUT5iS9HQUfjqDdkXSCTtPXuP_wH4sqGQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671375479</pqid></control><display><type>article</type><title>From source to crust: Tracing magmatic evolution in a kimberlite and a melilitite using microsample geochemistry</title><source>Access via ScienceDirect (Elsevier)</source><creator>Malarkey, J. ; Pearson, D.G. ; Kjarsgaard, B.A. ; Davidson, J.P. ; Nowell, G.M. ; Ottley, C.J. ; Stammer, J.</creator><creatorcontrib>Malarkey, J. ; Pearson, D.G. ; Kjarsgaard, B.A. ; Davidson, J.P. ; Nowell, G.M. ; Ottley, C.J. ; Stammer, J.</creatorcontrib><description>We present an integrated microsampling trace element and isotopic study of primary minerals within the Jos kimberlite, Canada, in order to observe how different phases record progressive crustal interaction in the evolving kimberlite. Identification of the least contaminated phases provides the best information on kimberlite source geochemistry. We also carried out an analogue study on an olivine melilitite from Saltpetre Kop, South Africa, examining a similar mineral suite, with the addition of melilite. The two studies show that all phases except phenocryst olivine show some evidence of crustal modification. Perovskite has recently been used as a proxy for source isotope composition. Although perovskite may provide a better constraint on the isotopic composition of the kimberlite than the whole rock, it does not necessarily provide the best constraint on the source region. The lower initial 87Sr/ 86Sr ratio recorded by early crystallising phases in the kimberlite is similar to those of the low-Cr megacryst suite, strengthening the genetic relationship between kimberlite activity and megacryst formation.</description><identifier>ISSN: 0012-821X</identifier><identifier>EISSN: 1385-013X</identifier><identifier>DOI: 10.1016/j.epsl.2010.08.020</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Evolution ; Genetics ; Geochemistry ; kimberlite ; megacrysts ; melilitite ; Minerals ; Olivine ; perovskite ; Perovskites ; Phases ; Sr isotopes ; Trace elements</subject><ispartof>Earth and planetary science letters, 2010-10, Vol.299 (1), p.80-90</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a356t-a6a07310a765616a902d3f3bcd525cc5ba67c39ddbdd64e0ad7aea07f25b03103</citedby><cites>FETCH-LOGICAL-a356t-a6a07310a765616a902d3f3bcd525cc5ba67c39ddbdd64e0ad7aea07f25b03103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.epsl.2010.08.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Malarkey, J.</creatorcontrib><creatorcontrib>Pearson, D.G.</creatorcontrib><creatorcontrib>Kjarsgaard, B.A.</creatorcontrib><creatorcontrib>Davidson, J.P.</creatorcontrib><creatorcontrib>Nowell, G.M.</creatorcontrib><creatorcontrib>Ottley, C.J.</creatorcontrib><creatorcontrib>Stammer, J.</creatorcontrib><title>From source to crust: Tracing magmatic evolution in a kimberlite and a melilitite using microsample geochemistry</title><title>Earth and planetary science letters</title><description>We present an integrated microsampling trace element and isotopic study of primary minerals within the Jos kimberlite, Canada, in order to observe how different phases record progressive crustal interaction in the evolving kimberlite. Identification of the least contaminated phases provides the best information on kimberlite source geochemistry. We also carried out an analogue study on an olivine melilitite from Saltpetre Kop, South Africa, examining a similar mineral suite, with the addition of melilite. The two studies show that all phases except phenocryst olivine show some evidence of crustal modification. Perovskite has recently been used as a proxy for source isotope composition. Although perovskite may provide a better constraint on the isotopic composition of the kimberlite than the whole rock, it does not necessarily provide the best constraint on the source region. The lower initial 87Sr/ 86Sr ratio recorded by early crystallising phases in the kimberlite is similar to those of the low-Cr megacryst suite, strengthening the genetic relationship between kimberlite activity and megacryst formation.</description><subject>Evolution</subject><subject>Genetics</subject><subject>Geochemistry</subject><subject>kimberlite</subject><subject>megacrysts</subject><subject>melilitite</subject><subject>Minerals</subject><subject>Olivine</subject><subject>perovskite</subject><subject>Perovskites</subject><subject>Phases</subject><subject>Sr isotopes</subject><subject>Trace elements</subject><issn>0012-821X</issn><issn>1385-013X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEuPjD3DKkUuH09B0Q1wQ4kuaxAUkbpGbeCOjbUqSIvHvSRlnTpZf-bFfv4ydCZgLEOpiO6chtvMSsgCLOZSwx2ZCLqoChHzbZzMAURaLUrwdsqMYtwCgKrWcseE--I5HPwZDPHluwhjTFX8JaFy_4R1uOkzOcPry7Zic77nrOfIP1zUUWpeIY2-z0FHrcjsJY_wlnQk-Yje0xDfkzTt1LqbwfcIO1thGOv2rx-z1_u7l9rFYPT883d6sCpSVSgUqhFoKwDr7FAqXUFq5lo2xVVkZUzWoaiOX1jbWqksCtDVSRtZl1UDm5DE73-0dgv8cKSad7xtqW-zJj1ELVQtZV5f1Mo-Wu9HJcQy01kNwHYZvLUBP8eqtnuLVU7waFjrHm6HrHUT5iS9HQUfjqDdkXSCTtPXuP_wH4sqGQQ</recordid><startdate>20101015</startdate><enddate>20101015</enddate><creator>Malarkey, J.</creator><creator>Pearson, D.G.</creator><creator>Kjarsgaard, B.A.</creator><creator>Davidson, J.P.</creator><creator>Nowell, G.M.</creator><creator>Ottley, C.J.</creator><creator>Stammer, J.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20101015</creationdate><title>From source to crust: Tracing magmatic evolution in a kimberlite and a melilitite using microsample geochemistry</title><author>Malarkey, J. ; Pearson, D.G. ; Kjarsgaard, B.A. ; Davidson, J.P. ; Nowell, G.M. ; Ottley, C.J. ; Stammer, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a356t-a6a07310a765616a902d3f3bcd525cc5ba67c39ddbdd64e0ad7aea07f25b03103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Evolution</topic><topic>Genetics</topic><topic>Geochemistry</topic><topic>kimberlite</topic><topic>megacrysts</topic><topic>melilitite</topic><topic>Minerals</topic><topic>Olivine</topic><topic>perovskite</topic><topic>Perovskites</topic><topic>Phases</topic><topic>Sr isotopes</topic><topic>Trace elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malarkey, J.</creatorcontrib><creatorcontrib>Pearson, D.G.</creatorcontrib><creatorcontrib>Kjarsgaard, B.A.</creatorcontrib><creatorcontrib>Davidson, J.P.</creatorcontrib><creatorcontrib>Nowell, G.M.</creatorcontrib><creatorcontrib>Ottley, C.J.</creatorcontrib><creatorcontrib>Stammer, J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Earth and planetary science letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malarkey, J.</au><au>Pearson, D.G.</au><au>Kjarsgaard, B.A.</au><au>Davidson, J.P.</au><au>Nowell, G.M.</au><au>Ottley, C.J.</au><au>Stammer, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From source to crust: Tracing magmatic evolution in a kimberlite and a melilitite using microsample geochemistry</atitle><jtitle>Earth and planetary science letters</jtitle><date>2010-10-15</date><risdate>2010</risdate><volume>299</volume><issue>1</issue><spage>80</spage><epage>90</epage><pages>80-90</pages><issn>0012-821X</issn><eissn>1385-013X</eissn><abstract>We present an integrated microsampling trace element and isotopic study of primary minerals within the Jos kimberlite, Canada, in order to observe how different phases record progressive crustal interaction in the evolving kimberlite. Identification of the least contaminated phases provides the best information on kimberlite source geochemistry. We also carried out an analogue study on an olivine melilitite from Saltpetre Kop, South Africa, examining a similar mineral suite, with the addition of melilite. The two studies show that all phases except phenocryst olivine show some evidence of crustal modification. Perovskite has recently been used as a proxy for source isotope composition. Although perovskite may provide a better constraint on the isotopic composition of the kimberlite than the whole rock, it does not necessarily provide the best constraint on the source region. The lower initial 87Sr/ 86Sr ratio recorded by early crystallising phases in the kimberlite is similar to those of the low-Cr megacryst suite, strengthening the genetic relationship between kimberlite activity and megacryst formation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.epsl.2010.08.020</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-821X
ispartof Earth and planetary science letters, 2010-10, Vol.299 (1), p.80-90
issn 0012-821X
1385-013X
language eng
recordid cdi_proquest_miscellaneous_1671375479
source Access via ScienceDirect (Elsevier)
subjects Evolution
Genetics
Geochemistry
kimberlite
megacrysts
melilitite
Minerals
Olivine
perovskite
Perovskites
Phases
Sr isotopes
Trace elements
title From source to crust: Tracing magmatic evolution in a kimberlite and a melilitite using microsample geochemistry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A21%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20source%20to%20crust:%20Tracing%20magmatic%20evolution%20in%20a%20kimberlite%20and%20a%20melilitite%20using%20microsample%20geochemistry&rft.jtitle=Earth%20and%20planetary%20science%20letters&rft.au=Malarkey,%20J.&rft.date=2010-10-15&rft.volume=299&rft.issue=1&rft.spage=80&rft.epage=90&rft.pages=80-90&rft.issn=0012-821X&rft.eissn=1385-013X&rft_id=info:doi/10.1016/j.epsl.2010.08.020&rft_dat=%3Cproquest_cross%3E1671375479%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671375479&rft_id=info:pmid/&rft_els_id=S0012821X10005303&rfr_iscdi=true