Stream engines meet wireless sensor networks: cost-based planning and processing of complex queries in AnduIN
Wireless sensor networks are powerful, distributed, self-organizing systems used for event and environmental monitoring. In-network query processors like TinyDB offer a user friendly SQL-like application development. Due to the sensor nodes’ resource limitations, monolithic approaches often support...
Gespeichert in:
Veröffentlicht in: | Distributed and parallel databases : an international journal 2011-02, Vol.29 (1-2), p.151-183 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 183 |
---|---|
container_issue | 1-2 |
container_start_page | 151 |
container_title | Distributed and parallel databases : an international journal |
container_volume | 29 |
creator | Klan, Daniel Karnstedt, Marcel Hose, Katja Ribe-Baumann, Liz Sattler, Kai-Uwe |
description | Wireless sensor networks are powerful, distributed, self-organizing systems used for event and environmental monitoring. In-network query processors like TinyDB offer a user friendly SQL-like application development. Due to the sensor nodes’ resource limitations, monolithic approaches often support only a restricted number of operators. For this reason, complex processing is typically outsourced to the base station. Nevertheless, previous work has shown that complete or partial in-network processing can be more efficient than the base station approach. In this paper, we introduce
AnduIN
, a system for developing, deploying, and running complex in-network processing tasks. In particular, we present the query planning and execution strategies used in
AnduIN
, a system combining sensor-local in-network processing and a data stream engine. Query planning employs a multi-dimensional cost model taking energy consumption into account and decides autonomously which query parts will be processed within the sensor network and which parts will be processed at the central instance. |
doi_str_mv | 10.1007/s10619-010-7071-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671374199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671374199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-8680e21c8cda1632154b249da3b3929ca8d0eff4defbee8f8c35aff2f81d31323</originalsourceid><addsrcrecordid>eNp9kL1OAzEQhC0EEiHwAHQuaQxeOzn76BDiT4qgAGrL8a2jC3e-4L0IeHschZpqNatvVrPD2DnIS5DSXBHICmohQQojDYjqgE1gbrQwc2MP2UTWqhLWWHXMTojWUsragJmw_nXM6HuOadUmJN4jjvyrzdghESdMNGSecPwa8gdd8zDQKJaesOGbzqfUphX3qYg8hGLYySEWqt90-M0_t5jbcrRN_CY126fnU3YUfUd49jen7P3-7u32USxeHp5ubxYiaAWjsJWVqCDY0Hioymo-W6pZ3Xi91LWqg7eNxBhnDcYloo026LmPUUULjQat9JRd7O-WXCUEja5vKWBXIuOwJQeVAW1mUNcFhT0a8kCUMbpNbnuffxxIt6vW7at1pVq3q9ZVxaP2HipsWmF262GbU_noH9MvaUt-OA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671374199</pqid></control><display><type>article</type><title>Stream engines meet wireless sensor networks: cost-based planning and processing of complex queries in AnduIN</title><source>SpringerNature Complete Journals</source><creator>Klan, Daniel ; Karnstedt, Marcel ; Hose, Katja ; Ribe-Baumann, Liz ; Sattler, Kai-Uwe</creator><creatorcontrib>Klan, Daniel ; Karnstedt, Marcel ; Hose, Katja ; Ribe-Baumann, Liz ; Sattler, Kai-Uwe</creatorcontrib><description>Wireless sensor networks are powerful, distributed, self-organizing systems used for event and environmental monitoring. In-network query processors like TinyDB offer a user friendly SQL-like application development. Due to the sensor nodes’ resource limitations, monolithic approaches often support only a restricted number of operators. For this reason, complex processing is typically outsourced to the base station. Nevertheless, previous work has shown that complete or partial in-network processing can be more efficient than the base station approach. In this paper, we introduce
AnduIN
, a system for developing, deploying, and running complex in-network processing tasks. In particular, we present the query planning and execution strategies used in
AnduIN
, a system combining sensor-local in-network processing and a data stream engine. Query planning employs a multi-dimensional cost model taking energy consumption into account and decides autonomously which query parts will be processed within the sensor network and which parts will be processed at the central instance.</description><identifier>ISSN: 0926-8782</identifier><identifier>EISSN: 1573-7578</identifier><identifier>DOI: 10.1007/s10619-010-7071-6</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Computer Science ; Data Structures ; Database Management ; Engines ; Information Systems Applications (incl.Internet) ; Memory Structures ; Networks ; Operating Systems ; Queries ; Sensors ; Stations ; Strategy ; Streams ; Tasks</subject><ispartof>Distributed and parallel databases : an international journal, 2011-02, Vol.29 (1-2), p.151-183</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-8680e21c8cda1632154b249da3b3929ca8d0eff4defbee8f8c35aff2f81d31323</citedby><cites>FETCH-LOGICAL-c321t-8680e21c8cda1632154b249da3b3929ca8d0eff4defbee8f8c35aff2f81d31323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10619-010-7071-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10619-010-7071-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Klan, Daniel</creatorcontrib><creatorcontrib>Karnstedt, Marcel</creatorcontrib><creatorcontrib>Hose, Katja</creatorcontrib><creatorcontrib>Ribe-Baumann, Liz</creatorcontrib><creatorcontrib>Sattler, Kai-Uwe</creatorcontrib><title>Stream engines meet wireless sensor networks: cost-based planning and processing of complex queries in AnduIN</title><title>Distributed and parallel databases : an international journal</title><addtitle>Distrib Parallel Databases</addtitle><description>Wireless sensor networks are powerful, distributed, self-organizing systems used for event and environmental monitoring. In-network query processors like TinyDB offer a user friendly SQL-like application development. Due to the sensor nodes’ resource limitations, monolithic approaches often support only a restricted number of operators. For this reason, complex processing is typically outsourced to the base station. Nevertheless, previous work has shown that complete or partial in-network processing can be more efficient than the base station approach. In this paper, we introduce
AnduIN
, a system for developing, deploying, and running complex in-network processing tasks. In particular, we present the query planning and execution strategies used in
AnduIN
, a system combining sensor-local in-network processing and a data stream engine. Query planning employs a multi-dimensional cost model taking energy consumption into account and decides autonomously which query parts will be processed within the sensor network and which parts will be processed at the central instance.</description><subject>Computer Science</subject><subject>Data Structures</subject><subject>Database Management</subject><subject>Engines</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Memory Structures</subject><subject>Networks</subject><subject>Operating Systems</subject><subject>Queries</subject><subject>Sensors</subject><subject>Stations</subject><subject>Strategy</subject><subject>Streams</subject><subject>Tasks</subject><issn>0926-8782</issn><issn>1573-7578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OAzEQhC0EEiHwAHQuaQxeOzn76BDiT4qgAGrL8a2jC3e-4L0IeHschZpqNatvVrPD2DnIS5DSXBHICmohQQojDYjqgE1gbrQwc2MP2UTWqhLWWHXMTojWUsragJmw_nXM6HuOadUmJN4jjvyrzdghESdMNGSecPwa8gdd8zDQKJaesOGbzqfUphX3qYg8hGLYySEWqt90-M0_t5jbcrRN_CY126fnU3YUfUd49jen7P3-7u32USxeHp5ubxYiaAWjsJWVqCDY0Hioymo-W6pZ3Xi91LWqg7eNxBhnDcYloo026LmPUUULjQat9JRd7O-WXCUEja5vKWBXIuOwJQeVAW1mUNcFhT0a8kCUMbpNbnuffxxIt6vW7at1pVq3q9ZVxaP2HipsWmF262GbU_noH9MvaUt-OA</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Klan, Daniel</creator><creator>Karnstedt, Marcel</creator><creator>Hose, Katja</creator><creator>Ribe-Baumann, Liz</creator><creator>Sattler, Kai-Uwe</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110201</creationdate><title>Stream engines meet wireless sensor networks: cost-based planning and processing of complex queries in AnduIN</title><author>Klan, Daniel ; Karnstedt, Marcel ; Hose, Katja ; Ribe-Baumann, Liz ; Sattler, Kai-Uwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-8680e21c8cda1632154b249da3b3929ca8d0eff4defbee8f8c35aff2f81d31323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computer Science</topic><topic>Data Structures</topic><topic>Database Management</topic><topic>Engines</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Memory Structures</topic><topic>Networks</topic><topic>Operating Systems</topic><topic>Queries</topic><topic>Sensors</topic><topic>Stations</topic><topic>Strategy</topic><topic>Streams</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klan, Daniel</creatorcontrib><creatorcontrib>Karnstedt, Marcel</creatorcontrib><creatorcontrib>Hose, Katja</creatorcontrib><creatorcontrib>Ribe-Baumann, Liz</creatorcontrib><creatorcontrib>Sattler, Kai-Uwe</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Distributed and parallel databases : an international journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klan, Daniel</au><au>Karnstedt, Marcel</au><au>Hose, Katja</au><au>Ribe-Baumann, Liz</au><au>Sattler, Kai-Uwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stream engines meet wireless sensor networks: cost-based planning and processing of complex queries in AnduIN</atitle><jtitle>Distributed and parallel databases : an international journal</jtitle><stitle>Distrib Parallel Databases</stitle><date>2011-02-01</date><risdate>2011</risdate><volume>29</volume><issue>1-2</issue><spage>151</spage><epage>183</epage><pages>151-183</pages><issn>0926-8782</issn><eissn>1573-7578</eissn><abstract>Wireless sensor networks are powerful, distributed, self-organizing systems used for event and environmental monitoring. In-network query processors like TinyDB offer a user friendly SQL-like application development. Due to the sensor nodes’ resource limitations, monolithic approaches often support only a restricted number of operators. For this reason, complex processing is typically outsourced to the base station. Nevertheless, previous work has shown that complete or partial in-network processing can be more efficient than the base station approach. In this paper, we introduce
AnduIN
, a system for developing, deploying, and running complex in-network processing tasks. In particular, we present the query planning and execution strategies used in
AnduIN
, a system combining sensor-local in-network processing and a data stream engine. Query planning employs a multi-dimensional cost model taking energy consumption into account and decides autonomously which query parts will be processed within the sensor network and which parts will be processed at the central instance.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10619-010-7071-6</doi><tpages>33</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-8782 |
ispartof | Distributed and parallel databases : an international journal, 2011-02, Vol.29 (1-2), p.151-183 |
issn | 0926-8782 1573-7578 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671374199 |
source | SpringerNature Complete Journals |
subjects | Computer Science Data Structures Database Management Engines Information Systems Applications (incl.Internet) Memory Structures Networks Operating Systems Queries Sensors Stations Strategy Streams Tasks |
title | Stream engines meet wireless sensor networks: cost-based planning and processing of complex queries in AnduIN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A54%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stream%20engines%20meet%20wireless%20sensor%20networks:%20cost-based%20planning%20and%20processing%20of%20complex%20queries%20in%20AnduIN&rft.jtitle=Distributed%20and%20parallel%20databases%20:%20an%20international%20journal&rft.au=Klan,%20Daniel&rft.date=2011-02-01&rft.volume=29&rft.issue=1-2&rft.spage=151&rft.epage=183&rft.pages=151-183&rft.issn=0926-8782&rft.eissn=1573-7578&rft_id=info:doi/10.1007/s10619-010-7071-6&rft_dat=%3Cproquest_cross%3E1671374199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671374199&rft_id=info:pmid/&rfr_iscdi=true |