Stream engines meet wireless sensor networks: cost-based planning and processing of complex queries in AnduIN

Wireless sensor networks are powerful, distributed, self-organizing systems used for event and environmental monitoring. In-network query processors like TinyDB offer a user friendly SQL-like application development. Due to the sensor nodes’ resource limitations, monolithic approaches often support...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Distributed and parallel databases : an international journal 2011-02, Vol.29 (1-2), p.151-183
Hauptverfasser: Klan, Daniel, Karnstedt, Marcel, Hose, Katja, Ribe-Baumann, Liz, Sattler, Kai-Uwe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue 1-2
container_start_page 151
container_title Distributed and parallel databases : an international journal
container_volume 29
creator Klan, Daniel
Karnstedt, Marcel
Hose, Katja
Ribe-Baumann, Liz
Sattler, Kai-Uwe
description Wireless sensor networks are powerful, distributed, self-organizing systems used for event and environmental monitoring. In-network query processors like TinyDB offer a user friendly SQL-like application development. Due to the sensor nodes’ resource limitations, monolithic approaches often support only a restricted number of operators. For this reason, complex processing is typically outsourced to the base station. Nevertheless, previous work has shown that complete or partial in-network processing can be more efficient than the base station approach. In this paper, we introduce AnduIN , a system for developing, deploying, and running complex in-network processing tasks. In particular, we present the query planning and execution strategies used in AnduIN , a system combining sensor-local in-network processing and a data stream engine. Query planning employs a multi-dimensional cost model taking energy consumption into account and decides autonomously which query parts will be processed within the sensor network and which parts will be processed at the central instance.
doi_str_mv 10.1007/s10619-010-7071-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671374199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671374199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-8680e21c8cda1632154b249da3b3929ca8d0eff4defbee8f8c35aff2f81d31323</originalsourceid><addsrcrecordid>eNp9kL1OAzEQhC0EEiHwAHQuaQxeOzn76BDiT4qgAGrL8a2jC3e-4L0IeHschZpqNatvVrPD2DnIS5DSXBHICmohQQojDYjqgE1gbrQwc2MP2UTWqhLWWHXMTojWUsragJmw_nXM6HuOadUmJN4jjvyrzdghESdMNGSecPwa8gdd8zDQKJaesOGbzqfUphX3qYg8hGLYySEWqt90-M0_t5jbcrRN_CY126fnU3YUfUd49jen7P3-7u32USxeHp5ubxYiaAWjsJWVqCDY0Hioymo-W6pZ3Xi91LWqg7eNxBhnDcYloo026LmPUUULjQat9JRd7O-WXCUEja5vKWBXIuOwJQeVAW1mUNcFhT0a8kCUMbpNbnuffxxIt6vW7at1pVq3q9ZVxaP2HipsWmF262GbU_noH9MvaUt-OA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671374199</pqid></control><display><type>article</type><title>Stream engines meet wireless sensor networks: cost-based planning and processing of complex queries in AnduIN</title><source>SpringerNature Complete Journals</source><creator>Klan, Daniel ; Karnstedt, Marcel ; Hose, Katja ; Ribe-Baumann, Liz ; Sattler, Kai-Uwe</creator><creatorcontrib>Klan, Daniel ; Karnstedt, Marcel ; Hose, Katja ; Ribe-Baumann, Liz ; Sattler, Kai-Uwe</creatorcontrib><description>Wireless sensor networks are powerful, distributed, self-organizing systems used for event and environmental monitoring. In-network query processors like TinyDB offer a user friendly SQL-like application development. Due to the sensor nodes’ resource limitations, monolithic approaches often support only a restricted number of operators. For this reason, complex processing is typically outsourced to the base station. Nevertheless, previous work has shown that complete or partial in-network processing can be more efficient than the base station approach. In this paper, we introduce AnduIN , a system for developing, deploying, and running complex in-network processing tasks. In particular, we present the query planning and execution strategies used in AnduIN , a system combining sensor-local in-network processing and a data stream engine. Query planning employs a multi-dimensional cost model taking energy consumption into account and decides autonomously which query parts will be processed within the sensor network and which parts will be processed at the central instance.</description><identifier>ISSN: 0926-8782</identifier><identifier>EISSN: 1573-7578</identifier><identifier>DOI: 10.1007/s10619-010-7071-6</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Computer Science ; Data Structures ; Database Management ; Engines ; Information Systems Applications (incl.Internet) ; Memory Structures ; Networks ; Operating Systems ; Queries ; Sensors ; Stations ; Strategy ; Streams ; Tasks</subject><ispartof>Distributed and parallel databases : an international journal, 2011-02, Vol.29 (1-2), p.151-183</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-8680e21c8cda1632154b249da3b3929ca8d0eff4defbee8f8c35aff2f81d31323</citedby><cites>FETCH-LOGICAL-c321t-8680e21c8cda1632154b249da3b3929ca8d0eff4defbee8f8c35aff2f81d31323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10619-010-7071-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10619-010-7071-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Klan, Daniel</creatorcontrib><creatorcontrib>Karnstedt, Marcel</creatorcontrib><creatorcontrib>Hose, Katja</creatorcontrib><creatorcontrib>Ribe-Baumann, Liz</creatorcontrib><creatorcontrib>Sattler, Kai-Uwe</creatorcontrib><title>Stream engines meet wireless sensor networks: cost-based planning and processing of complex queries in AnduIN</title><title>Distributed and parallel databases : an international journal</title><addtitle>Distrib Parallel Databases</addtitle><description>Wireless sensor networks are powerful, distributed, self-organizing systems used for event and environmental monitoring. In-network query processors like TinyDB offer a user friendly SQL-like application development. Due to the sensor nodes’ resource limitations, monolithic approaches often support only a restricted number of operators. For this reason, complex processing is typically outsourced to the base station. Nevertheless, previous work has shown that complete or partial in-network processing can be more efficient than the base station approach. In this paper, we introduce AnduIN , a system for developing, deploying, and running complex in-network processing tasks. In particular, we present the query planning and execution strategies used in AnduIN , a system combining sensor-local in-network processing and a data stream engine. Query planning employs a multi-dimensional cost model taking energy consumption into account and decides autonomously which query parts will be processed within the sensor network and which parts will be processed at the central instance.</description><subject>Computer Science</subject><subject>Data Structures</subject><subject>Database Management</subject><subject>Engines</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Memory Structures</subject><subject>Networks</subject><subject>Operating Systems</subject><subject>Queries</subject><subject>Sensors</subject><subject>Stations</subject><subject>Strategy</subject><subject>Streams</subject><subject>Tasks</subject><issn>0926-8782</issn><issn>1573-7578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OAzEQhC0EEiHwAHQuaQxeOzn76BDiT4qgAGrL8a2jC3e-4L0IeHschZpqNatvVrPD2DnIS5DSXBHICmohQQojDYjqgE1gbrQwc2MP2UTWqhLWWHXMTojWUsragJmw_nXM6HuOadUmJN4jjvyrzdghESdMNGSecPwa8gdd8zDQKJaesOGbzqfUphX3qYg8hGLYySEWqt90-M0_t5jbcrRN_CY126fnU3YUfUd49jen7P3-7u32USxeHp5ubxYiaAWjsJWVqCDY0Hioymo-W6pZ3Xi91LWqg7eNxBhnDcYloo026LmPUUULjQat9JRd7O-WXCUEja5vKWBXIuOwJQeVAW1mUNcFhT0a8kCUMbpNbnuffxxIt6vW7at1pVq3q9ZVxaP2HipsWmF262GbU_noH9MvaUt-OA</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Klan, Daniel</creator><creator>Karnstedt, Marcel</creator><creator>Hose, Katja</creator><creator>Ribe-Baumann, Liz</creator><creator>Sattler, Kai-Uwe</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110201</creationdate><title>Stream engines meet wireless sensor networks: cost-based planning and processing of complex queries in AnduIN</title><author>Klan, Daniel ; Karnstedt, Marcel ; Hose, Katja ; Ribe-Baumann, Liz ; Sattler, Kai-Uwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-8680e21c8cda1632154b249da3b3929ca8d0eff4defbee8f8c35aff2f81d31323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computer Science</topic><topic>Data Structures</topic><topic>Database Management</topic><topic>Engines</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Memory Structures</topic><topic>Networks</topic><topic>Operating Systems</topic><topic>Queries</topic><topic>Sensors</topic><topic>Stations</topic><topic>Strategy</topic><topic>Streams</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klan, Daniel</creatorcontrib><creatorcontrib>Karnstedt, Marcel</creatorcontrib><creatorcontrib>Hose, Katja</creatorcontrib><creatorcontrib>Ribe-Baumann, Liz</creatorcontrib><creatorcontrib>Sattler, Kai-Uwe</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Distributed and parallel databases : an international journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klan, Daniel</au><au>Karnstedt, Marcel</au><au>Hose, Katja</au><au>Ribe-Baumann, Liz</au><au>Sattler, Kai-Uwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stream engines meet wireless sensor networks: cost-based planning and processing of complex queries in AnduIN</atitle><jtitle>Distributed and parallel databases : an international journal</jtitle><stitle>Distrib Parallel Databases</stitle><date>2011-02-01</date><risdate>2011</risdate><volume>29</volume><issue>1-2</issue><spage>151</spage><epage>183</epage><pages>151-183</pages><issn>0926-8782</issn><eissn>1573-7578</eissn><abstract>Wireless sensor networks are powerful, distributed, self-organizing systems used for event and environmental monitoring. In-network query processors like TinyDB offer a user friendly SQL-like application development. Due to the sensor nodes’ resource limitations, monolithic approaches often support only a restricted number of operators. For this reason, complex processing is typically outsourced to the base station. Nevertheless, previous work has shown that complete or partial in-network processing can be more efficient than the base station approach. In this paper, we introduce AnduIN , a system for developing, deploying, and running complex in-network processing tasks. In particular, we present the query planning and execution strategies used in AnduIN , a system combining sensor-local in-network processing and a data stream engine. Query planning employs a multi-dimensional cost model taking energy consumption into account and decides autonomously which query parts will be processed within the sensor network and which parts will be processed at the central instance.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10619-010-7071-6</doi><tpages>33</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0926-8782
ispartof Distributed and parallel databases : an international journal, 2011-02, Vol.29 (1-2), p.151-183
issn 0926-8782
1573-7578
language eng
recordid cdi_proquest_miscellaneous_1671374199
source SpringerNature Complete Journals
subjects Computer Science
Data Structures
Database Management
Engines
Information Systems Applications (incl.Internet)
Memory Structures
Networks
Operating Systems
Queries
Sensors
Stations
Strategy
Streams
Tasks
title Stream engines meet wireless sensor networks: cost-based planning and processing of complex queries in AnduIN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A54%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stream%20engines%20meet%20wireless%20sensor%20networks:%20cost-based%20planning%20and%20processing%20of%20complex%20queries%20in%20AnduIN&rft.jtitle=Distributed%20and%20parallel%20databases%20:%20an%20international%20journal&rft.au=Klan,%20Daniel&rft.date=2011-02-01&rft.volume=29&rft.issue=1-2&rft.spage=151&rft.epage=183&rft.pages=151-183&rft.issn=0926-8782&rft.eissn=1573-7578&rft_id=info:doi/10.1007/s10619-010-7071-6&rft_dat=%3Cproquest_cross%3E1671374199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671374199&rft_id=info:pmid/&rfr_iscdi=true