QUASI-OPTIMAL APPROXIMATION OF SURFACE BASED LAGRANGE MULTIPLIERS IN FINITE ELEMENT METHODS
We show quasi-optimal a priori convergence results in the L²-and H -1/2 -norm for the approximation of surface based Lagrange multipliers such as those employed in the mortar finite element method. We improve on the estimates obtained in the standard saddle point theory, where error estimates for bo...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2012-01, Vol.50 (4), p.2064-2087 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2087 |
---|---|
container_issue | 4 |
container_start_page | 2064 |
container_title | SIAM journal on numerical analysis |
container_volume | 50 |
creator | MELENK, J. M. WOHLMUTH, B. |
description | We show quasi-optimal a priori convergence results in the L²-and H -1/2 -norm for the approximation of surface based Lagrange multipliers such as those employed in the mortar finite element method. We improve on the estimates obtained in the standard saddle point theory, where error estimates for both the primal and dual variables are obtained simultaneously and thus only suboptimal a priori estimates for the dual variable are reached. For the lowest order case, i.e., k = 1, an additional factor of $\sqrt h |Inh|$ and for higher order cases, i. e., k > 1, an additional factor of $\sqrt h$ in the a priori bound for the dual variable can be recovered. The proof is based on the use of new estimates for the primal variable in strips of width O(h) near these surfaces. |
doi_str_mv | 10.1137/110832999 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671374044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41713712</jstor_id><sourcerecordid>41713712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-22742908baa3008b43be496b3b7b1363b698dc60981a2997a5c227cc0a15eaff3</originalsourceid><addsrcrecordid>eNqF0U1LwzAYAOAgCs7pwR8gBLzooZq3SZv2WLdsC3Rt7QcIHkpaW9jY1tlsB_-9mZMdvHh6E3jyfgWhWyBPAJQ_AxCP2r7vn6EBEN-xOHByjgaEUNcCZvuX6ErrJTF3D-gAvb8WQSatOMnlPAhxkCRp_GaOuYwjHE9wVqSTYCTwS5CJMQ6DaRpEU4HnRZjLJJQizbCM8ERGMhdYhGIuohzPRT6Lx9k1umjVSjc3v3GIionIRzMrjKdyFIRWTZmzs2ybm76IVylFiQmMVg3z3YpWvALq0sr1vY_aJb4HykzGlVObJ3VNFDiNals6RA_HvNu--9w3eleuF7puViu1abq9LsHlZjWMMPY_NQUZUHAdQ-__0GW37zdmkBIIpczj7Ec9HlXdd1r3TVtu-8Va9V8GHbLx8vQjxt4d7VLvuv4EGRzaA5t-A5nAfAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033487465</pqid></control><display><type>article</type><title>QUASI-OPTIMAL APPROXIMATION OF SURFACE BASED LAGRANGE MULTIPLIERS IN FINITE ELEMENT METHODS</title><source>SIAM Journals Online</source><source>Jstor Complete Legacy</source><source>JSTOR Mathematics & Statistics</source><creator>MELENK, J. M. ; WOHLMUTH, B.</creator><creatorcontrib>MELENK, J. M. ; WOHLMUTH, B.</creatorcontrib><description>We show quasi-optimal a priori convergence results in the L²-and H -1/2 -norm for the approximation of surface based Lagrange multipliers such as those employed in the mortar finite element method. We improve on the estimates obtained in the standard saddle point theory, where error estimates for both the primal and dual variables are obtained simultaneously and thus only suboptimal a priori estimates for the dual variable are reached. For the lowest order case, i.e., k = 1, an additional factor of $\sqrt h |Inh|$ and for higher order cases, i. e., k > 1, an additional factor of $\sqrt h$ in the a priori bound for the dual variable can be recovered. The proof is based on the use of new estimates for the primal variable in strips of width O(h) near these surfaces.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/110832999</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>A priori knowledge ; Approximation ; Convergence ; Cylinders ; Decomposition ; Error analysis ; Estimates ; Estimation theory ; Finite element method ; Interfaces ; Interpolation ; Lagrange multiplier ; Lagrange multipliers ; Mathematical analysis ; Mathematical models ; Methods ; Mortars ; Norms ; Point estimators ; Variables</subject><ispartof>SIAM journal on numerical analysis, 2012-01, Vol.50 (4), p.2064-2087</ispartof><rights>Copyright ©2012 Society for Industrial and Applied Mathematics</rights><rights>2012, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-22742908baa3008b43be496b3b7b1363b698dc60981a2997a5c227cc0a15eaff3</citedby><cites>FETCH-LOGICAL-c345t-22742908baa3008b43be496b3b7b1363b698dc60981a2997a5c227cc0a15eaff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41713712$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41713712$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3171,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>MELENK, J. M.</creatorcontrib><creatorcontrib>WOHLMUTH, B.</creatorcontrib><title>QUASI-OPTIMAL APPROXIMATION OF SURFACE BASED LAGRANGE MULTIPLIERS IN FINITE ELEMENT METHODS</title><title>SIAM journal on numerical analysis</title><description>We show quasi-optimal a priori convergence results in the L²-and H -1/2 -norm for the approximation of surface based Lagrange multipliers such as those employed in the mortar finite element method. We improve on the estimates obtained in the standard saddle point theory, where error estimates for both the primal and dual variables are obtained simultaneously and thus only suboptimal a priori estimates for the dual variable are reached. For the lowest order case, i.e., k = 1, an additional factor of $\sqrt h |Inh|$ and for higher order cases, i. e., k > 1, an additional factor of $\sqrt h$ in the a priori bound for the dual variable can be recovered. The proof is based on the use of new estimates for the primal variable in strips of width O(h) near these surfaces.</description><subject>A priori knowledge</subject><subject>Approximation</subject><subject>Convergence</subject><subject>Cylinders</subject><subject>Decomposition</subject><subject>Error analysis</subject><subject>Estimates</subject><subject>Estimation theory</subject><subject>Finite element method</subject><subject>Interfaces</subject><subject>Interpolation</subject><subject>Lagrange multiplier</subject><subject>Lagrange multipliers</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Mortars</subject><subject>Norms</subject><subject>Point estimators</subject><subject>Variables</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0U1LwzAYAOAgCs7pwR8gBLzooZq3SZv2WLdsC3Rt7QcIHkpaW9jY1tlsB_-9mZMdvHh6E3jyfgWhWyBPAJQ_AxCP2r7vn6EBEN-xOHByjgaEUNcCZvuX6ErrJTF3D-gAvb8WQSatOMnlPAhxkCRp_GaOuYwjHE9wVqSTYCTwS5CJMQ6DaRpEU4HnRZjLJJQizbCM8ERGMhdYhGIuohzPRT6Lx9k1umjVSjc3v3GIionIRzMrjKdyFIRWTZmzs2ybm76IVylFiQmMVg3z3YpWvALq0sr1vY_aJb4HykzGlVObJ3VNFDiNals6RA_HvNu--9w3eleuF7puViu1abq9LsHlZjWMMPY_NQUZUHAdQ-__0GW37zdmkBIIpczj7Ec9HlXdd1r3TVtu-8Va9V8GHbLx8vQjxt4d7VLvuv4EGRzaA5t-A5nAfAg</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>MELENK, J. M.</creator><creator>WOHLMUTH, B.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120101</creationdate><title>QUASI-OPTIMAL APPROXIMATION OF SURFACE BASED LAGRANGE MULTIPLIERS IN FINITE ELEMENT METHODS</title><author>MELENK, J. M. ; WOHLMUTH, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-22742908baa3008b43be496b3b7b1363b698dc60981a2997a5c227cc0a15eaff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>A priori knowledge</topic><topic>Approximation</topic><topic>Convergence</topic><topic>Cylinders</topic><topic>Decomposition</topic><topic>Error analysis</topic><topic>Estimates</topic><topic>Estimation theory</topic><topic>Finite element method</topic><topic>Interfaces</topic><topic>Interpolation</topic><topic>Lagrange multiplier</topic><topic>Lagrange multipliers</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Mortars</topic><topic>Norms</topic><topic>Point estimators</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MELENK, J. M.</creatorcontrib><creatorcontrib>WOHLMUTH, B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MELENK, J. M.</au><au>WOHLMUTH, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QUASI-OPTIMAL APPROXIMATION OF SURFACE BASED LAGRANGE MULTIPLIERS IN FINITE ELEMENT METHODS</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>50</volume><issue>4</issue><spage>2064</spage><epage>2087</epage><pages>2064-2087</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>We show quasi-optimal a priori convergence results in the L²-and H -1/2 -norm for the approximation of surface based Lagrange multipliers such as those employed in the mortar finite element method. We improve on the estimates obtained in the standard saddle point theory, where error estimates for both the primal and dual variables are obtained simultaneously and thus only suboptimal a priori estimates for the dual variable are reached. For the lowest order case, i.e., k = 1, an additional factor of $\sqrt h |Inh|$ and for higher order cases, i. e., k > 1, an additional factor of $\sqrt h$ in the a priori bound for the dual variable can be recovered. The proof is based on the use of new estimates for the primal variable in strips of width O(h) near these surfaces.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/110832999</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 2012-01, Vol.50 (4), p.2064-2087 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671374044 |
source | SIAM Journals Online; Jstor Complete Legacy; JSTOR Mathematics & Statistics |
subjects | A priori knowledge Approximation Convergence Cylinders Decomposition Error analysis Estimates Estimation theory Finite element method Interfaces Interpolation Lagrange multiplier Lagrange multipliers Mathematical analysis Mathematical models Methods Mortars Norms Point estimators Variables |
title | QUASI-OPTIMAL APPROXIMATION OF SURFACE BASED LAGRANGE MULTIPLIERS IN FINITE ELEMENT METHODS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A21%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QUASI-OPTIMAL%20APPROXIMATION%20OF%20SURFACE%20BASED%20LAGRANGE%20MULTIPLIERS%20IN%20FINITE%20ELEMENT%20METHODS&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=MELENK,%20J.%20M.&rft.date=2012-01-01&rft.volume=50&rft.issue=4&rft.spage=2064&rft.epage=2087&rft.pages=2064-2087&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/110832999&rft_dat=%3Cjstor_proqu%3E41713712%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1033487465&rft_id=info:pmid/&rft_jstor_id=41713712&rfr_iscdi=true |