QUASI-OPTIMAL APPROXIMATION OF SURFACE BASED LAGRANGE MULTIPLIERS IN FINITE ELEMENT METHODS

We show quasi-optimal a priori convergence results in the L²-and H -1/2 -norm for the approximation of surface based Lagrange multipliers such as those employed in the mortar finite element method. We improve on the estimates obtained in the standard saddle point theory, where error estimates for bo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2012-01, Vol.50 (4), p.2064-2087
Hauptverfasser: MELENK, J. M., WOHLMUTH, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show quasi-optimal a priori convergence results in the L²-and H -1/2 -norm for the approximation of surface based Lagrange multipliers such as those employed in the mortar finite element method. We improve on the estimates obtained in the standard saddle point theory, where error estimates for both the primal and dual variables are obtained simultaneously and thus only suboptimal a priori estimates for the dual variable are reached. For the lowest order case, i.e., k = 1, an additional factor of $\sqrt h |Inh|$ and for higher order cases, i. e., k > 1, an additional factor of $\sqrt h$ in the a priori bound for the dual variable can be recovered. The proof is based on the use of new estimates for the primal variable in strips of width O(h) near these surfaces.
ISSN:0036-1429
1095-7170
DOI:10.1137/110832999