Polybenzimidazole-graft-polyvinylphosphonic acid-proton conducting fuel cell membranes

A new method for the preparation of polybenzimidazole (PBI)‐based membranes, containing high concentrations of immobilized phosphonic acid groups, has been developed. The procedure used is carried out in two steps: (1) Synthesis of modified PBIs, containing 1,2‐dihydroxypropyl groups and preparation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2013-08, Vol.129 (3), p.1223-1231
Hauptverfasser: Sinigersky, Vesselin, Budurova, Dessislava, Penchev, Hristo, Ublekov, Filip, Radev, Ivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1231
container_issue 3
container_start_page 1223
container_title Journal of applied polymer science
container_volume 129
creator Sinigersky, Vesselin
Budurova, Dessislava
Penchev, Hristo
Ublekov, Filip
Radev, Ivan
description A new method for the preparation of polybenzimidazole (PBI)‐based membranes, containing high concentrations of immobilized phosphonic acid groups, has been developed. The procedure used is carried out in two steps: (1) Synthesis of modified PBIs, containing 1,2‐dihydroxypropyl groups and preparation of films there from; (2) Introduction of vinylphosphonic acid (VPA) and initiator (cerium ammonium nitrate) in the film, subsequent grafting of VPA from the active sites of the PBI backbone. Membranes with different length of the grafted polyvinylphosphonic acid chains were prepared. The molar ratio grafted VPA units per PBI repeating unit reaches 7.8. Proton conductivity was measured at 120°C and relative humidity (RH) 20–100%. For the membrane with highest concentration of phosphonic acid groups the proton conductivity was 35 mS cm−1 at 100% RH and 8 mS cm−1 at 20% RH. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
doi_str_mv 10.1002/app.38780
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671374043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2962220251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3500-8ea6c77948950436f8c85f2d7542cfe912e8e678750185c19baccfbe3cfda4be3</originalsourceid><addsrcrecordid>eNp1kE1PHSEYhYmxiVfrwn8wSWPSLlAYYICluWn9qGnvwo8l4TKgKDNMYUa9_nrRa1006eLNm7w85-RwANjD6AAjVB_qYTggggu0AWYYSQ5pU4tNMCtvGAop2RbYzvkOIYwZambgahHDamn7Z9_5Vj_HYOFN0m6EQ7k_-H4VhtuYy_TeVNr4Fg4pjrGvTOzbyYy-v6ncZENlbAhVZ7tl0r3Nn8Enp0O2u-97B1z--H4xP4Hnv49P50fn0BCGEBRWN4ZzSYVkiJLGCSOYq1vOaG2clbi2wjZccIawYAbLpTbGLS0xrtW07B3wde1bUv2ZbB5V5_NrlBIiTlnhhmPCafEu6Jd_0Ls4pb6kU5hQwTAWmBXq25oyKeacrFND8p1OK4WRem1YlYbVW8OF3X931Nno4MrPjc8fgpqThtasLtzhmnv0wa7-b6iOFou_znCt8Hm0Tx8Kne5Vwwln6vrXsbq6-DmXZ9dUSfICgaCaZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1348511815</pqid></control><display><type>article</type><title>Polybenzimidazole-graft-polyvinylphosphonic acid-proton conducting fuel cell membranes</title><source>Wiley Online Library All Journals</source><creator>Sinigersky, Vesselin ; Budurova, Dessislava ; Penchev, Hristo ; Ublekov, Filip ; Radev, Ivan</creator><creatorcontrib>Sinigersky, Vesselin ; Budurova, Dessislava ; Penchev, Hristo ; Ublekov, Filip ; Radev, Ivan</creatorcontrib><description>A new method for the preparation of polybenzimidazole (PBI)‐based membranes, containing high concentrations of immobilized phosphonic acid groups, has been developed. The procedure used is carried out in two steps: (1) Synthesis of modified PBIs, containing 1,2‐dihydroxypropyl groups and preparation of films there from; (2) Introduction of vinylphosphonic acid (VPA) and initiator (cerium ammonium nitrate) in the film, subsequent grafting of VPA from the active sites of the PBI backbone. Membranes with different length of the grafted polyvinylphosphonic acid chains were prepared. The molar ratio grafted VPA units per PBI repeating unit reaches 7.8. Proton conductivity was measured at 120°C and relative humidity (RH) 20–100%. For the membrane with highest concentration of phosphonic acid groups the proton conductivity was 35 mS cm−1 at 100% RH and 8 mS cm−1 at 20% RH. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.38780</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; batteries and fuel cells ; conducting polymers ; Conduction ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Exchange resins and membranes ; Forms of application and semi-finished materials ; Fuel cells ; Grafting ; Materials science ; Membranes ; Phosphonic acids ; Polybenzimidazoles ; Polymer industry, paints, wood ; Polymers ; Relative humidity ; Reproduction ; Synthesis ; Technology of polymers</subject><ispartof>Journal of applied polymer science, 2013-08, Vol.129 (3), p.1223-1231</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3500-8ea6c77948950436f8c85f2d7542cfe912e8e678750185c19baccfbe3cfda4be3</citedby><cites>FETCH-LOGICAL-c3500-8ea6c77948950436f8c85f2d7542cfe912e8e678750185c19baccfbe3cfda4be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.38780$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.38780$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27364252$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sinigersky, Vesselin</creatorcontrib><creatorcontrib>Budurova, Dessislava</creatorcontrib><creatorcontrib>Penchev, Hristo</creatorcontrib><creatorcontrib>Ublekov, Filip</creatorcontrib><creatorcontrib>Radev, Ivan</creatorcontrib><title>Polybenzimidazole-graft-polyvinylphosphonic acid-proton conducting fuel cell membranes</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>A new method for the preparation of polybenzimidazole (PBI)‐based membranes, containing high concentrations of immobilized phosphonic acid groups, has been developed. The procedure used is carried out in two steps: (1) Synthesis of modified PBIs, containing 1,2‐dihydroxypropyl groups and preparation of films there from; (2) Introduction of vinylphosphonic acid (VPA) and initiator (cerium ammonium nitrate) in the film, subsequent grafting of VPA from the active sites of the PBI backbone. Membranes with different length of the grafted polyvinylphosphonic acid chains were prepared. The molar ratio grafted VPA units per PBI repeating unit reaches 7.8. Proton conductivity was measured at 120°C and relative humidity (RH) 20–100%. For the membrane with highest concentration of phosphonic acid groups the proton conductivity was 35 mS cm−1 at 100% RH and 8 mS cm−1 at 20% RH. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013</description><subject>Applied sciences</subject><subject>batteries and fuel cells</subject><subject>conducting polymers</subject><subject>Conduction</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Exchange resins and membranes</subject><subject>Forms of application and semi-finished materials</subject><subject>Fuel cells</subject><subject>Grafting</subject><subject>Materials science</subject><subject>Membranes</subject><subject>Phosphonic acids</subject><subject>Polybenzimidazoles</subject><subject>Polymer industry, paints, wood</subject><subject>Polymers</subject><subject>Relative humidity</subject><subject>Reproduction</subject><subject>Synthesis</subject><subject>Technology of polymers</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PHSEYhYmxiVfrwn8wSWPSLlAYYICluWn9qGnvwo8l4TKgKDNMYUa9_nrRa1006eLNm7w85-RwANjD6AAjVB_qYTggggu0AWYYSQ5pU4tNMCtvGAop2RbYzvkOIYwZambgahHDamn7Z9_5Vj_HYOFN0m6EQ7k_-H4VhtuYy_TeVNr4Fg4pjrGvTOzbyYy-v6ncZENlbAhVZ7tl0r3Nn8Enp0O2u-97B1z--H4xP4Hnv49P50fn0BCGEBRWN4ZzSYVkiJLGCSOYq1vOaG2clbi2wjZccIawYAbLpTbGLS0xrtW07B3wde1bUv2ZbB5V5_NrlBIiTlnhhmPCafEu6Jd_0Ls4pb6kU5hQwTAWmBXq25oyKeacrFND8p1OK4WRem1YlYbVW8OF3X931Nno4MrPjc8fgpqThtasLtzhmnv0wa7-b6iOFou_znCt8Hm0Tx8Kne5Vwwln6vrXsbq6-DmXZ9dUSfICgaCaZw</recordid><startdate>20130805</startdate><enddate>20130805</enddate><creator>Sinigersky, Vesselin</creator><creator>Budurova, Dessislava</creator><creator>Penchev, Hristo</creator><creator>Ublekov, Filip</creator><creator>Radev, Ivan</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7SP</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130805</creationdate><title>Polybenzimidazole-graft-polyvinylphosphonic acid-proton conducting fuel cell membranes</title><author>Sinigersky, Vesselin ; Budurova, Dessislava ; Penchev, Hristo ; Ublekov, Filip ; Radev, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3500-8ea6c77948950436f8c85f2d7542cfe912e8e678750185c19baccfbe3cfda4be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>batteries and fuel cells</topic><topic>conducting polymers</topic><topic>Conduction</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Exchange resins and membranes</topic><topic>Forms of application and semi-finished materials</topic><topic>Fuel cells</topic><topic>Grafting</topic><topic>Materials science</topic><topic>Membranes</topic><topic>Phosphonic acids</topic><topic>Polybenzimidazoles</topic><topic>Polymer industry, paints, wood</topic><topic>Polymers</topic><topic>Relative humidity</topic><topic>Reproduction</topic><topic>Synthesis</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinigersky, Vesselin</creatorcontrib><creatorcontrib>Budurova, Dessislava</creatorcontrib><creatorcontrib>Penchev, Hristo</creatorcontrib><creatorcontrib>Ublekov, Filip</creatorcontrib><creatorcontrib>Radev, Ivan</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinigersky, Vesselin</au><au>Budurova, Dessislava</au><au>Penchev, Hristo</au><au>Ublekov, Filip</au><au>Radev, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polybenzimidazole-graft-polyvinylphosphonic acid-proton conducting fuel cell membranes</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2013-08-05</date><risdate>2013</risdate><volume>129</volume><issue>3</issue><spage>1223</spage><epage>1231</epage><pages>1223-1231</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>A new method for the preparation of polybenzimidazole (PBI)‐based membranes, containing high concentrations of immobilized phosphonic acid groups, has been developed. The procedure used is carried out in two steps: (1) Synthesis of modified PBIs, containing 1,2‐dihydroxypropyl groups and preparation of films there from; (2) Introduction of vinylphosphonic acid (VPA) and initiator (cerium ammonium nitrate) in the film, subsequent grafting of VPA from the active sites of the PBI backbone. Membranes with different length of the grafted polyvinylphosphonic acid chains were prepared. The molar ratio grafted VPA units per PBI repeating unit reaches 7.8. Proton conductivity was measured at 120°C and relative humidity (RH) 20–100%. For the membrane with highest concentration of phosphonic acid groups the proton conductivity was 35 mS cm−1 at 100% RH and 8 mS cm−1 at 20% RH. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.38780</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2013-08, Vol.129 (3), p.1223-1231
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_miscellaneous_1671374043
source Wiley Online Library All Journals
subjects Applied sciences
batteries and fuel cells
conducting polymers
Conduction
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Exchange resins and membranes
Forms of application and semi-finished materials
Fuel cells
Grafting
Materials science
Membranes
Phosphonic acids
Polybenzimidazoles
Polymer industry, paints, wood
Polymers
Relative humidity
Reproduction
Synthesis
Technology of polymers
title Polybenzimidazole-graft-polyvinylphosphonic acid-proton conducting fuel cell membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A12%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polybenzimidazole-graft-polyvinylphosphonic%20acid-proton%20conducting%20fuel%20cell%20membranes&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Sinigersky,%20Vesselin&rft.date=2013-08-05&rft.volume=129&rft.issue=3&rft.spage=1223&rft.epage=1231&rft.pages=1223-1231&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.38780&rft_dat=%3Cproquest_cross%3E2962220251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1348511815&rft_id=info:pmid/&rfr_iscdi=true