Fatigue and fracture of a 316 stainless steel metal matrix composite reinforced with 25% titanium diboride

► Fatigue and fracture properties determined for an Fe/TiB2 particulate MMC. ► Fatigue crack growth rates are dependent on ΔK, and faster than in the steel matrix. ► Failure mechanisms determined from fracture surface analysis are dependent on K-max. ► As K-max increases, particle fracture increases...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fatigue 2013-03, Vol.48, p.39-47
Hauptverfasser: Bacon, D.H., Edwards, L., Moffatt, J.E., Fitzpatrick, M.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 47
container_issue
container_start_page 39
container_title International journal of fatigue
container_volume 48
creator Bacon, D.H.
Edwards, L.
Moffatt, J.E.
Fitzpatrick, M.E.
description ► Fatigue and fracture properties determined for an Fe/TiB2 particulate MMC. ► Fatigue crack growth rates are dependent on ΔK, and faster than in the steel matrix. ► Failure mechanisms determined from fracture surface analysis are dependent on K-max. ► As K-max increases, particle fracture increases, matrix fatigue decreases. ► At low ΔK, larger particles are observed on the fracture surface. Fatigue and fracture mechanisms have been studied in a steel-based metal matrix composite (MMC), comprising a 316L austenitic matrix reinforced with 25wt.% particulate titanium diboride (TiB2). The fracture toughness was determined in the as-HIPped condition as being slightly below 30MPa√m. Fatigue crack growth rates have been determined, and corrected for the effects of crack closure. The fracture surfaces have been studied to determine the mechanisms of damage during crack advance, which are determined as matrix fatigue, reinforcement particle fracture, and ductile rupture of the matrix. We show that the occurrence of damage mechanisms during fatigue of the material is linked to Kmax, rather than to ΔK. This is rationalised in terms of a semi-cohesive process zone within the monotonic plastic zone ahead of the crack tip.
doi_str_mv 10.1016/j.ijfatigue.2012.09.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671373642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112312002800</els_id><sourcerecordid>1349474053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-75da5aa771f7c226d218c4be37482bdf37300ba5042afebfa92cd926d1132f173</originalsourceid><addsrcrecordid>eNqFkUtv1TAQhS0EEpfCb8CbSmwS_Ep8s6yqFpAqsYG1NbHHMFEeF9uh8O9xuVW33Xis0XfmSOcw9l6KVgrZf5xamiIU-rFjq4RUrRjaun_BDvJoh0abTr1kByGNaqRU-jV7k_MkhBiE7Q5suj1LOayBxwS-7An5FjlwLXueC9A6Y871hzjzBQvUF0qiP9xvy2nLVJAnpDVuyWPg91R-ctVd8kIFVtoXHmjcEgV8y15FmDO-e5wX7Pvtzbfrz83d109frq_uGm96URrbBegArJXReqX6oOTRmxG1NUc1hqitFmKEThgFEccIg_JhqJyUWkVp9QX7cL57StuvHXNxC2WP8wwrbnt2sreyHumNeh7VZjDWiE5X1J5Rn7acE0Z3SrRA-uukcA9FuMk9FeEeinBicHVflZePJpA9zDXk1VN-kisrOnP873B15rCG85swuewJ1xoqJfTFhY2e9foHIByijQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349474053</pqid></control><display><type>article</type><title>Fatigue and fracture of a 316 stainless steel metal matrix composite reinforced with 25% titanium diboride</title><source>Elsevier ScienceDirect Journals</source><creator>Bacon, D.H. ; Edwards, L. ; Moffatt, J.E. ; Fitzpatrick, M.E.</creator><creatorcontrib>Bacon, D.H. ; Edwards, L. ; Moffatt, J.E. ; Fitzpatrick, M.E.</creatorcontrib><description>► Fatigue and fracture properties determined for an Fe/TiB2 particulate MMC. ► Fatigue crack growth rates are dependent on ΔK, and faster than in the steel matrix. ► Failure mechanisms determined from fracture surface analysis are dependent on K-max. ► As K-max increases, particle fracture increases, matrix fatigue decreases. ► At low ΔK, larger particles are observed on the fracture surface. Fatigue and fracture mechanisms have been studied in a steel-based metal matrix composite (MMC), comprising a 316L austenitic matrix reinforced with 25wt.% particulate titanium diboride (TiB2). The fracture toughness was determined in the as-HIPped condition as being slightly below 30MPa√m. Fatigue crack growth rates have been determined, and corrected for the effects of crack closure. The fracture surfaces have been studied to determine the mechanisms of damage during crack advance, which are determined as matrix fatigue, reinforcement particle fracture, and ductile rupture of the matrix. We show that the occurrence of damage mechanisms during fatigue of the material is linked to Kmax, rather than to ΔK. This is rationalised in terms of a semi-cohesive process zone within the monotonic plastic zone ahead of the crack tip.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2012.09.016</identifier><identifier>CODEN: IJFADB</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Austenitic stainless steels ; Crack propagation ; Damage ; Exact sciences and technology ; Fatigue ; Fatigue crack growth ; Fatigue failure ; Fracture mechanics ; Fracture surface analysis ; Heat resistant steels ; Intermetallic compounds ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metal matrix composites ; Metals. Metallurgy ; Particle fracture ; Particulate composites ; Titanium diboride</subject><ispartof>International journal of fatigue, 2013-03, Vol.48, p.39-47</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-75da5aa771f7c226d218c4be37482bdf37300ba5042afebfa92cd926d1132f173</citedby><cites>FETCH-LOGICAL-c460t-75da5aa771f7c226d218c4be37482bdf37300ba5042afebfa92cd926d1132f173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142112312002800$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27054853$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bacon, D.H.</creatorcontrib><creatorcontrib>Edwards, L.</creatorcontrib><creatorcontrib>Moffatt, J.E.</creatorcontrib><creatorcontrib>Fitzpatrick, M.E.</creatorcontrib><title>Fatigue and fracture of a 316 stainless steel metal matrix composite reinforced with 25% titanium diboride</title><title>International journal of fatigue</title><description>► Fatigue and fracture properties determined for an Fe/TiB2 particulate MMC. ► Fatigue crack growth rates are dependent on ΔK, and faster than in the steel matrix. ► Failure mechanisms determined from fracture surface analysis are dependent on K-max. ► As K-max increases, particle fracture increases, matrix fatigue decreases. ► At low ΔK, larger particles are observed on the fracture surface. Fatigue and fracture mechanisms have been studied in a steel-based metal matrix composite (MMC), comprising a 316L austenitic matrix reinforced with 25wt.% particulate titanium diboride (TiB2). The fracture toughness was determined in the as-HIPped condition as being slightly below 30MPa√m. Fatigue crack growth rates have been determined, and corrected for the effects of crack closure. The fracture surfaces have been studied to determine the mechanisms of damage during crack advance, which are determined as matrix fatigue, reinforcement particle fracture, and ductile rupture of the matrix. We show that the occurrence of damage mechanisms during fatigue of the material is linked to Kmax, rather than to ΔK. This is rationalised in terms of a semi-cohesive process zone within the monotonic plastic zone ahead of the crack tip.</description><subject>Applied sciences</subject><subject>Austenitic stainless steels</subject><subject>Crack propagation</subject><subject>Damage</subject><subject>Exact sciences and technology</subject><subject>Fatigue</subject><subject>Fatigue crack growth</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Fracture surface analysis</subject><subject>Heat resistant steels</subject><subject>Intermetallic compounds</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metal matrix composites</subject><subject>Metals. Metallurgy</subject><subject>Particle fracture</subject><subject>Particulate composites</subject><subject>Titanium diboride</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1TAQhS0EEpfCb8CbSmwS_Ep8s6yqFpAqsYG1NbHHMFEeF9uh8O9xuVW33Xis0XfmSOcw9l6KVgrZf5xamiIU-rFjq4RUrRjaun_BDvJoh0abTr1kByGNaqRU-jV7k_MkhBiE7Q5suj1LOayBxwS-7An5FjlwLXueC9A6Y871hzjzBQvUF0qiP9xvy2nLVJAnpDVuyWPg91R-ctVd8kIFVtoXHmjcEgV8y15FmDO-e5wX7Pvtzbfrz83d109frq_uGm96URrbBegArJXReqX6oOTRmxG1NUc1hqitFmKEThgFEccIg_JhqJyUWkVp9QX7cL57StuvHXNxC2WP8wwrbnt2sreyHumNeh7VZjDWiE5X1J5Rn7acE0Z3SrRA-uukcA9FuMk9FeEeinBicHVflZePJpA9zDXk1VN-kisrOnP873B15rCG85swuewJ1xoqJfTFhY2e9foHIByijQ</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Bacon, D.H.</creator><creator>Edwards, L.</creator><creator>Moffatt, J.E.</creator><creator>Fitzpatrick, M.E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20130301</creationdate><title>Fatigue and fracture of a 316 stainless steel metal matrix composite reinforced with 25% titanium diboride</title><author>Bacon, D.H. ; Edwards, L. ; Moffatt, J.E. ; Fitzpatrick, M.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-75da5aa771f7c226d218c4be37482bdf37300ba5042afebfa92cd926d1132f173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Austenitic stainless steels</topic><topic>Crack propagation</topic><topic>Damage</topic><topic>Exact sciences and technology</topic><topic>Fatigue</topic><topic>Fatigue crack growth</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Fracture surface analysis</topic><topic>Heat resistant steels</topic><topic>Intermetallic compounds</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metal matrix composites</topic><topic>Metals. Metallurgy</topic><topic>Particle fracture</topic><topic>Particulate composites</topic><topic>Titanium diboride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bacon, D.H.</creatorcontrib><creatorcontrib>Edwards, L.</creatorcontrib><creatorcontrib>Moffatt, J.E.</creatorcontrib><creatorcontrib>Fitzpatrick, M.E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bacon, D.H.</au><au>Edwards, L.</au><au>Moffatt, J.E.</au><au>Fitzpatrick, M.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue and fracture of a 316 stainless steel metal matrix composite reinforced with 25% titanium diboride</atitle><jtitle>International journal of fatigue</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>48</volume><spage>39</spage><epage>47</epage><pages>39-47</pages><issn>0142-1123</issn><eissn>1879-3452</eissn><coden>IJFADB</coden><abstract>► Fatigue and fracture properties determined for an Fe/TiB2 particulate MMC. ► Fatigue crack growth rates are dependent on ΔK, and faster than in the steel matrix. ► Failure mechanisms determined from fracture surface analysis are dependent on K-max. ► As K-max increases, particle fracture increases, matrix fatigue decreases. ► At low ΔK, larger particles are observed on the fracture surface. Fatigue and fracture mechanisms have been studied in a steel-based metal matrix composite (MMC), comprising a 316L austenitic matrix reinforced with 25wt.% particulate titanium diboride (TiB2). The fracture toughness was determined in the as-HIPped condition as being slightly below 30MPa√m. Fatigue crack growth rates have been determined, and corrected for the effects of crack closure. The fracture surfaces have been studied to determine the mechanisms of damage during crack advance, which are determined as matrix fatigue, reinforcement particle fracture, and ductile rupture of the matrix. We show that the occurrence of damage mechanisms during fatigue of the material is linked to Kmax, rather than to ΔK. This is rationalised in terms of a semi-cohesive process zone within the monotonic plastic zone ahead of the crack tip.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2012.09.016</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-1123
ispartof International journal of fatigue, 2013-03, Vol.48, p.39-47
issn 0142-1123
1879-3452
language eng
recordid cdi_proquest_miscellaneous_1671373642
source Elsevier ScienceDirect Journals
subjects Applied sciences
Austenitic stainless steels
Crack propagation
Damage
Exact sciences and technology
Fatigue
Fatigue crack growth
Fatigue failure
Fracture mechanics
Fracture surface analysis
Heat resistant steels
Intermetallic compounds
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metal matrix composites
Metals. Metallurgy
Particle fracture
Particulate composites
Titanium diboride
title Fatigue and fracture of a 316 stainless steel metal matrix composite reinforced with 25% titanium diboride
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A22%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20and%20fracture%20of%20a%20316%20stainless%20steel%20metal%20matrix%20composite%20reinforced%20with%2025%25%20titanium%20diboride&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Bacon,%20D.H.&rft.date=2013-03-01&rft.volume=48&rft.spage=39&rft.epage=47&rft.pages=39-47&rft.issn=0142-1123&rft.eissn=1879-3452&rft.coden=IJFADB&rft_id=info:doi/10.1016/j.ijfatigue.2012.09.016&rft_dat=%3Cproquest_cross%3E1349474053%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349474053&rft_id=info:pmid/&rft_els_id=S0142112312002800&rfr_iscdi=true