Exponential asymptotics of localised patterns and snaking bifurcation diagrams

Localised patterns emerging from a subcritical modulation instability are analysed by carrying the multiple-scales analysis beyond all orders. The model studied is the Swift–Hohenberg equation of nonlinear optics, which is equivalent to the classical Swift–Hohenberg equation with a quadratic and a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. D 2009-02, Vol.238 (3), p.319-354
Hauptverfasser: Chapman, S.J., Kozyreff, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 354
container_issue 3
container_start_page 319
container_title Physica. D
container_volume 238
creator Chapman, S.J.
Kozyreff, G.
description Localised patterns emerging from a subcritical modulation instability are analysed by carrying the multiple-scales analysis beyond all orders. The model studied is the Swift–Hohenberg equation of nonlinear optics, which is equivalent to the classical Swift–Hohenberg equation with a quadratic and a cubic nonlinearity. Applying the asymptotic technique away from the Maxwell point first, it is shown how exponentially small terms determine the phase of the fast spatial oscillation with respect to their slow sech -type amplitude. In the vicinity of the Maxwell point, the beyond-all-orders calculation yields the “pinning range” of parameters where stable stationary fronts connect the homogeneous and periodic states. The full bifurcation diagram for localised patterns is then computed analytically, including snake and ladder bifurcation curves. This last step requires the matching of the periodic oscillation in the middle of a localised pattern both with an up- and a down-front. To this end, a third, super-slow spatial scale needs to be introduced, in which fronts appear as boundary layers. In addition, the location of the Maxwell point and the oscillation wave number of localised patterns are required to fourth-order accuracy in the oscillation amplitude.
doi_str_mv 10.1016/j.physd.2008.10.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671373219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167278908003679</els_id><sourcerecordid>1671373219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-6d9adbe0647f0fc2c2e55ab41801dab479a8e10f7d4071304eae509f9851f9003</originalsourceid><addsrcrecordid>eNp9kD2PEzEQhi0EEuHgF9Bsg0SzYez98G5BgU7Hh3Q6GqitiT0-HDb24nEQ-fc45ER51SuNnplX8wjxWsJWghzf7bfrjxO7rQKY6mQLMDwRGzlp1U6g1FOxqZRulZ7m5-IF8x4ApO70Rtzd_FlTpFgCLg3y6bCWVILlJvlmSRaXwOSaFUuhHLnB6BqO-DPE-2YX_DFbLCHFxgW8z3jgl-KZx4Xp1UNeie8fb75df25vv376cv3htrXdOJZ2dDO6HcHYaw_eKqtoGHDXywmkq6lnnEiC164HLTvoCWmA2c_TIP0M0F2Jt5e7a06_jsTFHAJbWhaMlI5s6rey052Sc0W7C2pzYs7kzZrDAfPJSDBne2Zv_tkzZ3vnYbVXt948FCBXCz5jtIH_ryop-2kcZeXeXziq3_4OlA3bQNGSC5lsMS6FR3v-Anirh4Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671373219</pqid></control><display><type>article</type><title>Exponential asymptotics of localised patterns and snaking bifurcation diagrams</title><source>Elsevier ScienceDirect Journals</source><creator>Chapman, S.J. ; Kozyreff, G.</creator><creatorcontrib>Chapman, S.J. ; Kozyreff, G.</creatorcontrib><description>Localised patterns emerging from a subcritical modulation instability are analysed by carrying the multiple-scales analysis beyond all orders. The model studied is the Swift–Hohenberg equation of nonlinear optics, which is equivalent to the classical Swift–Hohenberg equation with a quadratic and a cubic nonlinearity. Applying the asymptotic technique away from the Maxwell point first, it is shown how exponentially small terms determine the phase of the fast spatial oscillation with respect to their slow sech -type amplitude. In the vicinity of the Maxwell point, the beyond-all-orders calculation yields the “pinning range” of parameters where stable stationary fronts connect the homogeneous and periodic states. The full bifurcation diagram for localised patterns is then computed analytically, including snake and ladder bifurcation curves. This last step requires the matching of the periodic oscillation in the middle of a localised pattern both with an up- and a down-front. To this end, a third, super-slow spatial scale needs to be introduced, in which fronts appear as boundary layers. In addition, the location of the Maxwell point and the oscillation wave number of localised patterns are required to fourth-order accuracy in the oscillation amplitude.</description><identifier>ISSN: 0167-2789</identifier><identifier>EISSN: 1872-8022</identifier><identifier>DOI: 10.1016/j.physd.2008.10.005</identifier><identifier>CODEN: PDNPDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Amplitudes ; Asymptotic properties ; Beyond all orders ; Bifurcation ; Bifurcations ; Exact sciences and technology ; Instability ; Localised patterns ; Mathematical analysis ; Mathematical models ; Maxwell point ; Multiple scales ; Oscillations ; Physics ; Pinning ; Position (location) ; Stokes lines ; Swift–Hohenberg</subject><ispartof>Physica. D, 2009-02, Vol.238 (3), p.319-354</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-6d9adbe0647f0fc2c2e55ab41801dab479a8e10f7d4071304eae509f9851f9003</citedby><cites>FETCH-LOGICAL-c366t-6d9adbe0647f0fc2c2e55ab41801dab479a8e10f7d4071304eae509f9851f9003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167278908003679$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21148661$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chapman, S.J.</creatorcontrib><creatorcontrib>Kozyreff, G.</creatorcontrib><title>Exponential asymptotics of localised patterns and snaking bifurcation diagrams</title><title>Physica. D</title><description>Localised patterns emerging from a subcritical modulation instability are analysed by carrying the multiple-scales analysis beyond all orders. The model studied is the Swift–Hohenberg equation of nonlinear optics, which is equivalent to the classical Swift–Hohenberg equation with a quadratic and a cubic nonlinearity. Applying the asymptotic technique away from the Maxwell point first, it is shown how exponentially small terms determine the phase of the fast spatial oscillation with respect to their slow sech -type amplitude. In the vicinity of the Maxwell point, the beyond-all-orders calculation yields the “pinning range” of parameters where stable stationary fronts connect the homogeneous and periodic states. The full bifurcation diagram for localised patterns is then computed analytically, including snake and ladder bifurcation curves. This last step requires the matching of the periodic oscillation in the middle of a localised pattern both with an up- and a down-front. To this end, a third, super-slow spatial scale needs to be introduced, in which fronts appear as boundary layers. In addition, the location of the Maxwell point and the oscillation wave number of localised patterns are required to fourth-order accuracy in the oscillation amplitude.</description><subject>Amplitudes</subject><subject>Asymptotic properties</subject><subject>Beyond all orders</subject><subject>Bifurcation</subject><subject>Bifurcations</subject><subject>Exact sciences and technology</subject><subject>Instability</subject><subject>Localised patterns</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Maxwell point</subject><subject>Multiple scales</subject><subject>Oscillations</subject><subject>Physics</subject><subject>Pinning</subject><subject>Position (location)</subject><subject>Stokes lines</subject><subject>Swift–Hohenberg</subject><issn>0167-2789</issn><issn>1872-8022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kD2PEzEQhi0EEuHgF9Bsg0SzYez98G5BgU7Hh3Q6GqitiT0-HDb24nEQ-fc45ER51SuNnplX8wjxWsJWghzf7bfrjxO7rQKY6mQLMDwRGzlp1U6g1FOxqZRulZ7m5-IF8x4ApO70Rtzd_FlTpFgCLg3y6bCWVILlJvlmSRaXwOSaFUuhHLnB6BqO-DPE-2YX_DFbLCHFxgW8z3jgl-KZx4Xp1UNeie8fb75df25vv376cv3htrXdOJZ2dDO6HcHYaw_eKqtoGHDXywmkq6lnnEiC164HLTvoCWmA2c_TIP0M0F2Jt5e7a06_jsTFHAJbWhaMlI5s6rey052Sc0W7C2pzYs7kzZrDAfPJSDBne2Zv_tkzZ3vnYbVXt948FCBXCz5jtIH_ryop-2kcZeXeXziq3_4OlA3bQNGSC5lsMS6FR3v-Anirh4Y</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Chapman, S.J.</creator><creator>Kozyreff, G.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20090201</creationdate><title>Exponential asymptotics of localised patterns and snaking bifurcation diagrams</title><author>Chapman, S.J. ; Kozyreff, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-6d9adbe0647f0fc2c2e55ab41801dab479a8e10f7d4071304eae509f9851f9003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amplitudes</topic><topic>Asymptotic properties</topic><topic>Beyond all orders</topic><topic>Bifurcation</topic><topic>Bifurcations</topic><topic>Exact sciences and technology</topic><topic>Instability</topic><topic>Localised patterns</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Maxwell point</topic><topic>Multiple scales</topic><topic>Oscillations</topic><topic>Physics</topic><topic>Pinning</topic><topic>Position (location)</topic><topic>Stokes lines</topic><topic>Swift–Hohenberg</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chapman, S.J.</creatorcontrib><creatorcontrib>Kozyreff, G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chapman, S.J.</au><au>Kozyreff, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential asymptotics of localised patterns and snaking bifurcation diagrams</atitle><jtitle>Physica. D</jtitle><date>2009-02-01</date><risdate>2009</risdate><volume>238</volume><issue>3</issue><spage>319</spage><epage>354</epage><pages>319-354</pages><issn>0167-2789</issn><eissn>1872-8022</eissn><coden>PDNPDT</coden><abstract>Localised patterns emerging from a subcritical modulation instability are analysed by carrying the multiple-scales analysis beyond all orders. The model studied is the Swift–Hohenberg equation of nonlinear optics, which is equivalent to the classical Swift–Hohenberg equation with a quadratic and a cubic nonlinearity. Applying the asymptotic technique away from the Maxwell point first, it is shown how exponentially small terms determine the phase of the fast spatial oscillation with respect to their slow sech -type amplitude. In the vicinity of the Maxwell point, the beyond-all-orders calculation yields the “pinning range” of parameters where stable stationary fronts connect the homogeneous and periodic states. The full bifurcation diagram for localised patterns is then computed analytically, including snake and ladder bifurcation curves. This last step requires the matching of the periodic oscillation in the middle of a localised pattern both with an up- and a down-front. To this end, a third, super-slow spatial scale needs to be introduced, in which fronts appear as boundary layers. In addition, the location of the Maxwell point and the oscillation wave number of localised patterns are required to fourth-order accuracy in the oscillation amplitude.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physd.2008.10.005</doi><tpages>36</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-2789
ispartof Physica. D, 2009-02, Vol.238 (3), p.319-354
issn 0167-2789
1872-8022
language eng
recordid cdi_proquest_miscellaneous_1671373219
source Elsevier ScienceDirect Journals
subjects Amplitudes
Asymptotic properties
Beyond all orders
Bifurcation
Bifurcations
Exact sciences and technology
Instability
Localised patterns
Mathematical analysis
Mathematical models
Maxwell point
Multiple scales
Oscillations
Physics
Pinning
Position (location)
Stokes lines
Swift–Hohenberg
title Exponential asymptotics of localised patterns and snaking bifurcation diagrams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A13%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20asymptotics%20of%20localised%20patterns%20and%20snaking%20bifurcation%20diagrams&rft.jtitle=Physica.%20D&rft.au=Chapman,%20S.J.&rft.date=2009-02-01&rft.volume=238&rft.issue=3&rft.spage=319&rft.epage=354&rft.pages=319-354&rft.issn=0167-2789&rft.eissn=1872-8022&rft.coden=PDNPDT&rft_id=info:doi/10.1016/j.physd.2008.10.005&rft_dat=%3Cproquest_cross%3E1671373219%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671373219&rft_id=info:pmid/&rft_els_id=S0167278908003679&rfr_iscdi=true