Automatic Determination of Acceleration Factor Based on Residual and Functional in Shifted ICCG Method for 3-D Electromagnetic Field Analyses

This paper describes new strategy for determining an optimal acceleration factor in the shifted incomplete Cholesky conjugate gradient (ICCG) method. Although a useful method focused on the maximum diagonal entry in the incomplete Cholesky (IC) preconditioner was already proposed, it cannot always p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2013-05, Vol.49 (5), p.1741-1744
Hauptverfasser: Kitao, Junji, Takahashi, Yasuhito, Fujiwara, Koji, Mifune, Takeshi, Iwashita, Takeshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1744
container_issue 5
container_start_page 1741
container_title IEEE transactions on magnetics
container_volume 49
creator Kitao, Junji
Takahashi, Yasuhito
Fujiwara, Koji
Mifune, Takeshi
Iwashita, Takeshi
description This paper describes new strategy for determining an optimal acceleration factor in the shifted incomplete Cholesky conjugate gradient (ICCG) method. Although a useful method focused on the maximum diagonal entry in the incomplete Cholesky (IC) preconditioner was already proposed, it cannot always provide the optimal acceleration factor. In this paper, we propose new automatic determination methods based on the minimization of the norms of the remainder matrix, the residual, and the functional in the shifted ICCG method and discuss its effectiveness in the 3-D electromagnetic field analyses using the edge-based finite element method. It is concluded that the proposed methods based on the minimization of the norm of the residual or the functional can determine an appropriate acceleration factor within the acceptable computational cost and improve the convergence property of the shifted ICCG method.
doi_str_mv 10.1109/TMAG.2013.2239277
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671370363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6514551</ieee_id><sourcerecordid>1671370363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-7ea54c2536b0d072a88dd1a07c2aafafa44833462e9d640287885d9f3e81afab3</originalsourceid><addsrcrecordid>eNpdkc9q3DAQxk1poNukD1B6EZRCL97onyX56G6ym0BCIE3PRpHGjYLXSiX5kIfoO3fMLjmUOQwf8_tmJL6q-szomjHanj_cdrs1p0ysORct1_pdtWKtZDWlqn1frShlpm6lkh-qjzk_o5QNo6vqbzeXuLclOHIBBdI-TCjiROJAOudghHTQW-tKTOSHzeAJ6nvIwc92JHbyZDtPbqFQhon8fApDQep6s9mRWyhP0ZMBvaK-IJcjuJLw4u8JlqPbAKMnHTpfM-Sz6mSwY4ZPx35a_dpePmyu6pu73fWmu6mdaFSpNdhGOt4I9Ug91dwa4z2zVDtu7YAlpRFCKg6tV5Jyo41pfDsIMAynj-K0-n7Y-5Linxly6fch42dHO0Gcc8-UZkJToQSiX_9Dn-Oc8L1IiYYaZrTWSLED5VLMOcHQv6Swt-m1Z7RfAuqXgPoloP4YEHq-HTfb7Ow4JDu5kN-MXEsjuZDIfTlwAQDexqrBBBsm_gENe5j8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1350818777</pqid></control><display><type>article</type><title>Automatic Determination of Acceleration Factor Based on Residual and Functional in Shifted ICCG Method for 3-D Electromagnetic Field Analyses</title><source>IEEE Electronic Library (IEL)</source><creator>Kitao, Junji ; Takahashi, Yasuhito ; Fujiwara, Koji ; Mifune, Takeshi ; Iwashita, Takeshi</creator><creatorcontrib>Kitao, Junji ; Takahashi, Yasuhito ; Fujiwara, Koji ; Mifune, Takeshi ; Iwashita, Takeshi</creatorcontrib><description>This paper describes new strategy for determining an optimal acceleration factor in the shifted incomplete Cholesky conjugate gradient (ICCG) method. Although a useful method focused on the maximum diagonal entry in the incomplete Cholesky (IC) preconditioner was already proposed, it cannot always provide the optimal acceleration factor. In this paper, we propose new automatic determination methods based on the minimization of the norms of the remainder matrix, the residual, and the functional in the shifted ICCG method and discuss its effectiveness in the 3-D electromagnetic field analyses using the edge-based finite element method. It is concluded that the proposed methods based on the minimization of the norm of the residual or the functional can determine an appropriate acceleration factor within the acceptable computational cost and improve the convergence property of the shifted ICCG method.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2013.2239277</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acceleration ; Analytical models ; Computational efficiency ; Convergence ; Cross-disciplinary physics: materials science; rheology ; Edge-based finite element method ; Electromagnetic fields ; Exact sciences and technology ; Finite element analysis ; functional ; ICCOCG method ; Integrated circuit modeling ; Magnetism ; Materials science ; Mathematical model ; Minimization ; Norms ; Optimization ; Other topics in materials science ; Physics ; remainder matrix ; residual ; shifted ICCG method ; Solid modeling ; Studies ; Three dimensional</subject><ispartof>IEEE transactions on magnetics, 2013-05, Vol.49 (5), p.1741-1744</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-7ea54c2536b0d072a88dd1a07c2aafafa44833462e9d640287885d9f3e81afab3</citedby><cites>FETCH-LOGICAL-c356t-7ea54c2536b0d072a88dd1a07c2aafafa44833462e9d640287885d9f3e81afab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6514551$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6514551$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27484234$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kitao, Junji</creatorcontrib><creatorcontrib>Takahashi, Yasuhito</creatorcontrib><creatorcontrib>Fujiwara, Koji</creatorcontrib><creatorcontrib>Mifune, Takeshi</creatorcontrib><creatorcontrib>Iwashita, Takeshi</creatorcontrib><title>Automatic Determination of Acceleration Factor Based on Residual and Functional in Shifted ICCG Method for 3-D Electromagnetic Field Analyses</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>This paper describes new strategy for determining an optimal acceleration factor in the shifted incomplete Cholesky conjugate gradient (ICCG) method. Although a useful method focused on the maximum diagonal entry in the incomplete Cholesky (IC) preconditioner was already proposed, it cannot always provide the optimal acceleration factor. In this paper, we propose new automatic determination methods based on the minimization of the norms of the remainder matrix, the residual, and the functional in the shifted ICCG method and discuss its effectiveness in the 3-D electromagnetic field analyses using the edge-based finite element method. It is concluded that the proposed methods based on the minimization of the norm of the residual or the functional can determine an appropriate acceleration factor within the acceptable computational cost and improve the convergence property of the shifted ICCG method.</description><subject>Acceleration</subject><subject>Analytical models</subject><subject>Computational efficiency</subject><subject>Convergence</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Edge-based finite element method</subject><subject>Electromagnetic fields</subject><subject>Exact sciences and technology</subject><subject>Finite element analysis</subject><subject>functional</subject><subject>ICCOCG method</subject><subject>Integrated circuit modeling</subject><subject>Magnetism</subject><subject>Materials science</subject><subject>Mathematical model</subject><subject>Minimization</subject><subject>Norms</subject><subject>Optimization</subject><subject>Other topics in materials science</subject><subject>Physics</subject><subject>remainder matrix</subject><subject>residual</subject><subject>shifted ICCG method</subject><subject>Solid modeling</subject><subject>Studies</subject><subject>Three dimensional</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc9q3DAQxk1poNukD1B6EZRCL97onyX56G6ym0BCIE3PRpHGjYLXSiX5kIfoO3fMLjmUOQwf8_tmJL6q-szomjHanj_cdrs1p0ysORct1_pdtWKtZDWlqn1frShlpm6lkh-qjzk_o5QNo6vqbzeXuLclOHIBBdI-TCjiROJAOudghHTQW-tKTOSHzeAJ6nvIwc92JHbyZDtPbqFQhon8fApDQep6s9mRWyhP0ZMBvaK-IJcjuJLw4u8JlqPbAKMnHTpfM-Sz6mSwY4ZPx35a_dpePmyu6pu73fWmu6mdaFSpNdhGOt4I9Ug91dwa4z2zVDtu7YAlpRFCKg6tV5Jyo41pfDsIMAynj-K0-n7Y-5Linxly6fch42dHO0Gcc8-UZkJToQSiX_9Dn-Oc8L1IiYYaZrTWSLED5VLMOcHQv6Swt-m1Z7RfAuqXgPoloP4YEHq-HTfb7Ow4JDu5kN-MXEsjuZDIfTlwAQDexqrBBBsm_gENe5j8</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Kitao, Junji</creator><creator>Takahashi, Yasuhito</creator><creator>Fujiwara, Koji</creator><creator>Mifune, Takeshi</creator><creator>Iwashita, Takeshi</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130501</creationdate><title>Automatic Determination of Acceleration Factor Based on Residual and Functional in Shifted ICCG Method for 3-D Electromagnetic Field Analyses</title><author>Kitao, Junji ; Takahashi, Yasuhito ; Fujiwara, Koji ; Mifune, Takeshi ; Iwashita, Takeshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-7ea54c2536b0d072a88dd1a07c2aafafa44833462e9d640287885d9f3e81afab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acceleration</topic><topic>Analytical models</topic><topic>Computational efficiency</topic><topic>Convergence</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Edge-based finite element method</topic><topic>Electromagnetic fields</topic><topic>Exact sciences and technology</topic><topic>Finite element analysis</topic><topic>functional</topic><topic>ICCOCG method</topic><topic>Integrated circuit modeling</topic><topic>Magnetism</topic><topic>Materials science</topic><topic>Mathematical model</topic><topic>Minimization</topic><topic>Norms</topic><topic>Optimization</topic><topic>Other topics in materials science</topic><topic>Physics</topic><topic>remainder matrix</topic><topic>residual</topic><topic>shifted ICCG method</topic><topic>Solid modeling</topic><topic>Studies</topic><topic>Three dimensional</topic><toplevel>online_resources</toplevel><creatorcontrib>Kitao, Junji</creatorcontrib><creatorcontrib>Takahashi, Yasuhito</creatorcontrib><creatorcontrib>Fujiwara, Koji</creatorcontrib><creatorcontrib>Mifune, Takeshi</creatorcontrib><creatorcontrib>Iwashita, Takeshi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kitao, Junji</au><au>Takahashi, Yasuhito</au><au>Fujiwara, Koji</au><au>Mifune, Takeshi</au><au>Iwashita, Takeshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Determination of Acceleration Factor Based on Residual and Functional in Shifted ICCG Method for 3-D Electromagnetic Field Analyses</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2013-05-01</date><risdate>2013</risdate><volume>49</volume><issue>5</issue><spage>1741</spage><epage>1744</epage><pages>1741-1744</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>This paper describes new strategy for determining an optimal acceleration factor in the shifted incomplete Cholesky conjugate gradient (ICCG) method. Although a useful method focused on the maximum diagonal entry in the incomplete Cholesky (IC) preconditioner was already proposed, it cannot always provide the optimal acceleration factor. In this paper, we propose new automatic determination methods based on the minimization of the norms of the remainder matrix, the residual, and the functional in the shifted ICCG method and discuss its effectiveness in the 3-D electromagnetic field analyses using the edge-based finite element method. It is concluded that the proposed methods based on the minimization of the norm of the residual or the functional can determine an appropriate acceleration factor within the acceptable computational cost and improve the convergence property of the shifted ICCG method.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2013.2239277</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2013-05, Vol.49 (5), p.1741-1744
issn 0018-9464
1941-0069
language eng
recordid cdi_proquest_miscellaneous_1671370363
source IEEE Electronic Library (IEL)
subjects Acceleration
Analytical models
Computational efficiency
Convergence
Cross-disciplinary physics: materials science
rheology
Edge-based finite element method
Electromagnetic fields
Exact sciences and technology
Finite element analysis
functional
ICCOCG method
Integrated circuit modeling
Magnetism
Materials science
Mathematical model
Minimization
Norms
Optimization
Other topics in materials science
Physics
remainder matrix
residual
shifted ICCG method
Solid modeling
Studies
Three dimensional
title Automatic Determination of Acceleration Factor Based on Residual and Functional in Shifted ICCG Method for 3-D Electromagnetic Field Analyses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Determination%20of%20Acceleration%20Factor%20Based%20on%20Residual%20and%20Functional%20in%20Shifted%20ICCG%20Method%20for%203-D%20Electromagnetic%20Field%20Analyses&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Kitao,%20Junji&rft.date=2013-05-01&rft.volume=49&rft.issue=5&rft.spage=1741&rft.epage=1744&rft.pages=1741-1744&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2013.2239277&rft_dat=%3Cproquest_RIE%3E1671370363%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1350818777&rft_id=info:pmid/&rft_ieee_id=6514551&rfr_iscdi=true