Automatic Determination of Acceleration Factor Based on Residual and Functional in Shifted ICCG Method for 3-D Electromagnetic Field Analyses
This paper describes new strategy for determining an optimal acceleration factor in the shifted incomplete Cholesky conjugate gradient (ICCG) method. Although a useful method focused on the maximum diagonal entry in the incomplete Cholesky (IC) preconditioner was already proposed, it cannot always p...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2013-05, Vol.49 (5), p.1741-1744 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1744 |
---|---|
container_issue | 5 |
container_start_page | 1741 |
container_title | IEEE transactions on magnetics |
container_volume | 49 |
creator | Kitao, Junji Takahashi, Yasuhito Fujiwara, Koji Mifune, Takeshi Iwashita, Takeshi |
description | This paper describes new strategy for determining an optimal acceleration factor in the shifted incomplete Cholesky conjugate gradient (ICCG) method. Although a useful method focused on the maximum diagonal entry in the incomplete Cholesky (IC) preconditioner was already proposed, it cannot always provide the optimal acceleration factor. In this paper, we propose new automatic determination methods based on the minimization of the norms of the remainder matrix, the residual, and the functional in the shifted ICCG method and discuss its effectiveness in the 3-D electromagnetic field analyses using the edge-based finite element method. It is concluded that the proposed methods based on the minimization of the norm of the residual or the functional can determine an appropriate acceleration factor within the acceptable computational cost and improve the convergence property of the shifted ICCG method. |
doi_str_mv | 10.1109/TMAG.2013.2239277 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671370363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6514551</ieee_id><sourcerecordid>1671370363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-7ea54c2536b0d072a88dd1a07c2aafafa44833462e9d640287885d9f3e81afab3</originalsourceid><addsrcrecordid>eNpdkc9q3DAQxk1poNukD1B6EZRCL97onyX56G6ym0BCIE3PRpHGjYLXSiX5kIfoO3fMLjmUOQwf8_tmJL6q-szomjHanj_cdrs1p0ysORct1_pdtWKtZDWlqn1frShlpm6lkh-qjzk_o5QNo6vqbzeXuLclOHIBBdI-TCjiROJAOudghHTQW-tKTOSHzeAJ6nvIwc92JHbyZDtPbqFQhon8fApDQep6s9mRWyhP0ZMBvaK-IJcjuJLw4u8JlqPbAKMnHTpfM-Sz6mSwY4ZPx35a_dpePmyu6pu73fWmu6mdaFSpNdhGOt4I9Ug91dwa4z2zVDtu7YAlpRFCKg6tV5Jyo41pfDsIMAynj-K0-n7Y-5Linxly6fch42dHO0Gcc8-UZkJToQSiX_9Dn-Oc8L1IiYYaZrTWSLED5VLMOcHQv6Swt-m1Z7RfAuqXgPoloP4YEHq-HTfb7Ow4JDu5kN-MXEsjuZDIfTlwAQDexqrBBBsm_gENe5j8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1350818777</pqid></control><display><type>article</type><title>Automatic Determination of Acceleration Factor Based on Residual and Functional in Shifted ICCG Method for 3-D Electromagnetic Field Analyses</title><source>IEEE Electronic Library (IEL)</source><creator>Kitao, Junji ; Takahashi, Yasuhito ; Fujiwara, Koji ; Mifune, Takeshi ; Iwashita, Takeshi</creator><creatorcontrib>Kitao, Junji ; Takahashi, Yasuhito ; Fujiwara, Koji ; Mifune, Takeshi ; Iwashita, Takeshi</creatorcontrib><description>This paper describes new strategy for determining an optimal acceleration factor in the shifted incomplete Cholesky conjugate gradient (ICCG) method. Although a useful method focused on the maximum diagonal entry in the incomplete Cholesky (IC) preconditioner was already proposed, it cannot always provide the optimal acceleration factor. In this paper, we propose new automatic determination methods based on the minimization of the norms of the remainder matrix, the residual, and the functional in the shifted ICCG method and discuss its effectiveness in the 3-D electromagnetic field analyses using the edge-based finite element method. It is concluded that the proposed methods based on the minimization of the norm of the residual or the functional can determine an appropriate acceleration factor within the acceptable computational cost and improve the convergence property of the shifted ICCG method.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2013.2239277</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acceleration ; Analytical models ; Computational efficiency ; Convergence ; Cross-disciplinary physics: materials science; rheology ; Edge-based finite element method ; Electromagnetic fields ; Exact sciences and technology ; Finite element analysis ; functional ; ICCOCG method ; Integrated circuit modeling ; Magnetism ; Materials science ; Mathematical model ; Minimization ; Norms ; Optimization ; Other topics in materials science ; Physics ; remainder matrix ; residual ; shifted ICCG method ; Solid modeling ; Studies ; Three dimensional</subject><ispartof>IEEE transactions on magnetics, 2013-05, Vol.49 (5), p.1741-1744</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-7ea54c2536b0d072a88dd1a07c2aafafa44833462e9d640287885d9f3e81afab3</citedby><cites>FETCH-LOGICAL-c356t-7ea54c2536b0d072a88dd1a07c2aafafa44833462e9d640287885d9f3e81afab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6514551$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6514551$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27484234$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kitao, Junji</creatorcontrib><creatorcontrib>Takahashi, Yasuhito</creatorcontrib><creatorcontrib>Fujiwara, Koji</creatorcontrib><creatorcontrib>Mifune, Takeshi</creatorcontrib><creatorcontrib>Iwashita, Takeshi</creatorcontrib><title>Automatic Determination of Acceleration Factor Based on Residual and Functional in Shifted ICCG Method for 3-D Electromagnetic Field Analyses</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>This paper describes new strategy for determining an optimal acceleration factor in the shifted incomplete Cholesky conjugate gradient (ICCG) method. Although a useful method focused on the maximum diagonal entry in the incomplete Cholesky (IC) preconditioner was already proposed, it cannot always provide the optimal acceleration factor. In this paper, we propose new automatic determination methods based on the minimization of the norms of the remainder matrix, the residual, and the functional in the shifted ICCG method and discuss its effectiveness in the 3-D electromagnetic field analyses using the edge-based finite element method. It is concluded that the proposed methods based on the minimization of the norm of the residual or the functional can determine an appropriate acceleration factor within the acceptable computational cost and improve the convergence property of the shifted ICCG method.</description><subject>Acceleration</subject><subject>Analytical models</subject><subject>Computational efficiency</subject><subject>Convergence</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Edge-based finite element method</subject><subject>Electromagnetic fields</subject><subject>Exact sciences and technology</subject><subject>Finite element analysis</subject><subject>functional</subject><subject>ICCOCG method</subject><subject>Integrated circuit modeling</subject><subject>Magnetism</subject><subject>Materials science</subject><subject>Mathematical model</subject><subject>Minimization</subject><subject>Norms</subject><subject>Optimization</subject><subject>Other topics in materials science</subject><subject>Physics</subject><subject>remainder matrix</subject><subject>residual</subject><subject>shifted ICCG method</subject><subject>Solid modeling</subject><subject>Studies</subject><subject>Three dimensional</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc9q3DAQxk1poNukD1B6EZRCL97onyX56G6ym0BCIE3PRpHGjYLXSiX5kIfoO3fMLjmUOQwf8_tmJL6q-szomjHanj_cdrs1p0ysORct1_pdtWKtZDWlqn1frShlpm6lkh-qjzk_o5QNo6vqbzeXuLclOHIBBdI-TCjiROJAOudghHTQW-tKTOSHzeAJ6nvIwc92JHbyZDtPbqFQhon8fApDQep6s9mRWyhP0ZMBvaK-IJcjuJLw4u8JlqPbAKMnHTpfM-Sz6mSwY4ZPx35a_dpePmyu6pu73fWmu6mdaFSpNdhGOt4I9Ug91dwa4z2zVDtu7YAlpRFCKg6tV5Jyo41pfDsIMAynj-K0-n7Y-5Linxly6fch42dHO0Gcc8-UZkJToQSiX_9Dn-Oc8L1IiYYaZrTWSLED5VLMOcHQv6Swt-m1Z7RfAuqXgPoloP4YEHq-HTfb7Ow4JDu5kN-MXEsjuZDIfTlwAQDexqrBBBsm_gENe5j8</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Kitao, Junji</creator><creator>Takahashi, Yasuhito</creator><creator>Fujiwara, Koji</creator><creator>Mifune, Takeshi</creator><creator>Iwashita, Takeshi</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130501</creationdate><title>Automatic Determination of Acceleration Factor Based on Residual and Functional in Shifted ICCG Method for 3-D Electromagnetic Field Analyses</title><author>Kitao, Junji ; Takahashi, Yasuhito ; Fujiwara, Koji ; Mifune, Takeshi ; Iwashita, Takeshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-7ea54c2536b0d072a88dd1a07c2aafafa44833462e9d640287885d9f3e81afab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acceleration</topic><topic>Analytical models</topic><topic>Computational efficiency</topic><topic>Convergence</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Edge-based finite element method</topic><topic>Electromagnetic fields</topic><topic>Exact sciences and technology</topic><topic>Finite element analysis</topic><topic>functional</topic><topic>ICCOCG method</topic><topic>Integrated circuit modeling</topic><topic>Magnetism</topic><topic>Materials science</topic><topic>Mathematical model</topic><topic>Minimization</topic><topic>Norms</topic><topic>Optimization</topic><topic>Other topics in materials science</topic><topic>Physics</topic><topic>remainder matrix</topic><topic>residual</topic><topic>shifted ICCG method</topic><topic>Solid modeling</topic><topic>Studies</topic><topic>Three dimensional</topic><toplevel>online_resources</toplevel><creatorcontrib>Kitao, Junji</creatorcontrib><creatorcontrib>Takahashi, Yasuhito</creatorcontrib><creatorcontrib>Fujiwara, Koji</creatorcontrib><creatorcontrib>Mifune, Takeshi</creatorcontrib><creatorcontrib>Iwashita, Takeshi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kitao, Junji</au><au>Takahashi, Yasuhito</au><au>Fujiwara, Koji</au><au>Mifune, Takeshi</au><au>Iwashita, Takeshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Determination of Acceleration Factor Based on Residual and Functional in Shifted ICCG Method for 3-D Electromagnetic Field Analyses</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2013-05-01</date><risdate>2013</risdate><volume>49</volume><issue>5</issue><spage>1741</spage><epage>1744</epage><pages>1741-1744</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>This paper describes new strategy for determining an optimal acceleration factor in the shifted incomplete Cholesky conjugate gradient (ICCG) method. Although a useful method focused on the maximum diagonal entry in the incomplete Cholesky (IC) preconditioner was already proposed, it cannot always provide the optimal acceleration factor. In this paper, we propose new automatic determination methods based on the minimization of the norms of the remainder matrix, the residual, and the functional in the shifted ICCG method and discuss its effectiveness in the 3-D electromagnetic field analyses using the edge-based finite element method. It is concluded that the proposed methods based on the minimization of the norm of the residual or the functional can determine an appropriate acceleration factor within the acceptable computational cost and improve the convergence property of the shifted ICCG method.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2013.2239277</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2013-05, Vol.49 (5), p.1741-1744 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671370363 |
source | IEEE Electronic Library (IEL) |
subjects | Acceleration Analytical models Computational efficiency Convergence Cross-disciplinary physics: materials science rheology Edge-based finite element method Electromagnetic fields Exact sciences and technology Finite element analysis functional ICCOCG method Integrated circuit modeling Magnetism Materials science Mathematical model Minimization Norms Optimization Other topics in materials science Physics remainder matrix residual shifted ICCG method Solid modeling Studies Three dimensional |
title | Automatic Determination of Acceleration Factor Based on Residual and Functional in Shifted ICCG Method for 3-D Electromagnetic Field Analyses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Determination%20of%20Acceleration%20Factor%20Based%20on%20Residual%20and%20Functional%20in%20Shifted%20ICCG%20Method%20for%203-D%20Electromagnetic%20Field%20Analyses&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Kitao,%20Junji&rft.date=2013-05-01&rft.volume=49&rft.issue=5&rft.spage=1741&rft.epage=1744&rft.pages=1741-1744&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2013.2239277&rft_dat=%3Cproquest_RIE%3E1671370363%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1350818777&rft_id=info:pmid/&rft_ieee_id=6514551&rfr_iscdi=true |