A Novel Class Imbalance Learning using Ordering Points Clustering
In Data mining and Knowledge Discovery hidden and valuable knowledge from the data sources is discovered. The traditional algorithms used for knowledge discovery are bottle necked due to wide range of data sources availability. Class imbalance is a one of the problem arises due to data source which...
Gespeichert in:
Veröffentlicht in: | International journal of computer applications 2012-01, Vol.51 (16), p.33-42 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 42 |
---|---|
container_issue | 16 |
container_start_page | 33 |
container_title | International journal of computer applications |
container_volume | 51 |
creator | Rao, K Nageswara Rao, T Venkateswara Lakshmi, D Rajya |
description | In Data mining and Knowledge Discovery hidden and valuable knowledge from the data sources is discovered. The traditional algorithms used for knowledge discovery are bottle necked due to wide range of data sources availability. Class imbalance is a one of the problem arises due to data source which provide unequal class i. e. examples of one class in a training data set vastly outnumber examples of the other class(es). This paper proposes a method belonging to under sampling approach which uses OPTICS one of the best visualization clustering technique for handling class imbalance problem. In the proposed approach, further Classification of new data is performed by applying C4. 5 algorithm as the base algorithm. The method is optimized by the selection of the most suitable clusters for deletion of the majority dataset based on visualization algorithms. An experimental analysis is carried out over a wide range of highly imbalanced data sets and uses the statistical tests suggested in the specialized literature. The results obtained show that our novel proposal outperforms other classic and recent models in terms of Area under the ROC Curve, F-measure, precision, TP rate and TN rate. |
doi_str_mv | 10.5120/8128-1863 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671368460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671368460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1303-3d32e9c98fea6280e1c71e8b94eec1374d6ab5f70e2663612f8fec330cdf89dc3</originalsourceid><addsrcrecordid>eNpd0E1LxDAQBuAgCi7rHvwHBS96qCaZNk2Oy-LHwuJ60HNI06l06cea2Qr-e1PXg5jDZBgehuFl7FLw21xIfqeF1KnQCk7YjJsiT7XWxemf_pwtiHY8PjBSmWzGlsvkefjENlm1jihZd6VrXe8x2aALfdO_JyNNdRsqDFPzMjT9gSIf6fAzuWBntWsJF7__nL093L-untLN9nG9Wm5SL4BDChVINN7oGp2SmqPwhUBdmgwxiiKrlCvzuuAolQIlZB2lB-C-qrWpPMzZ9XHvPgwfI9LBdg15bOO5OIxkhSoEKJ0pHunVP7obxtDH66zgJgeR5zqL6uaofBiIAtZ2H5rOha-I7JSnnfK0U57wDSxkZWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1095315584</pqid></control><display><type>article</type><title>A Novel Class Imbalance Learning using Ordering Points Clustering</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Rao, K Nageswara ; Rao, T Venkateswara ; Lakshmi, D Rajya</creator><creatorcontrib>Rao, K Nageswara ; Rao, T Venkateswara ; Lakshmi, D Rajya</creatorcontrib><description>In Data mining and Knowledge Discovery hidden and valuable knowledge from the data sources is discovered. The traditional algorithms used for knowledge discovery are bottle necked due to wide range of data sources availability. Class imbalance is a one of the problem arises due to data source which provide unequal class i. e. examples of one class in a training data set vastly outnumber examples of the other class(es). This paper proposes a method belonging to under sampling approach which uses OPTICS one of the best visualization clustering technique for handling class imbalance problem. In the proposed approach, further Classification of new data is performed by applying C4. 5 algorithm as the base algorithm. The method is optimized by the selection of the most suitable clusters for deletion of the majority dataset based on visualization algorithms. An experimental analysis is carried out over a wide range of highly imbalanced data sets and uses the statistical tests suggested in the specialized literature. The results obtained show that our novel proposal outperforms other classic and recent models in terms of Area under the ROC Curve, F-measure, precision, TP rate and TN rate.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/8128-1863</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><subject>Algorithms ; Clustering ; Data sources ; Materials handling ; Mathematical models ; Order disorder ; Proposals ; Visualization</subject><ispartof>International journal of computer applications, 2012-01, Vol.51 (16), p.33-42</ispartof><rights>Copyright Foundation of Computer Science 2012</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Rao, K Nageswara</creatorcontrib><creatorcontrib>Rao, T Venkateswara</creatorcontrib><creatorcontrib>Lakshmi, D Rajya</creatorcontrib><title>A Novel Class Imbalance Learning using Ordering Points Clustering</title><title>International journal of computer applications</title><description>In Data mining and Knowledge Discovery hidden and valuable knowledge from the data sources is discovered. The traditional algorithms used for knowledge discovery are bottle necked due to wide range of data sources availability. Class imbalance is a one of the problem arises due to data source which provide unequal class i. e. examples of one class in a training data set vastly outnumber examples of the other class(es). This paper proposes a method belonging to under sampling approach which uses OPTICS one of the best visualization clustering technique for handling class imbalance problem. In the proposed approach, further Classification of new data is performed by applying C4. 5 algorithm as the base algorithm. The method is optimized by the selection of the most suitable clusters for deletion of the majority dataset based on visualization algorithms. An experimental analysis is carried out over a wide range of highly imbalanced data sets and uses the statistical tests suggested in the specialized literature. The results obtained show that our novel proposal outperforms other classic and recent models in terms of Area under the ROC Curve, F-measure, precision, TP rate and TN rate.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Data sources</subject><subject>Materials handling</subject><subject>Mathematical models</subject><subject>Order disorder</subject><subject>Proposals</subject><subject>Visualization</subject><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpd0E1LxDAQBuAgCi7rHvwHBS96qCaZNk2Oy-LHwuJ60HNI06l06cea2Qr-e1PXg5jDZBgehuFl7FLw21xIfqeF1KnQCk7YjJsiT7XWxemf_pwtiHY8PjBSmWzGlsvkefjENlm1jihZd6VrXe8x2aALfdO_JyNNdRsqDFPzMjT9gSIf6fAzuWBntWsJF7__nL093L-untLN9nG9Wm5SL4BDChVINN7oGp2SmqPwhUBdmgwxiiKrlCvzuuAolQIlZB2lB-C-qrWpPMzZ9XHvPgwfI9LBdg15bOO5OIxkhSoEKJ0pHunVP7obxtDH66zgJgeR5zqL6uaofBiIAtZ2H5rOha-I7JSnnfK0U57wDSxkZWA</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Rao, K Nageswara</creator><creator>Rao, T Venkateswara</creator><creator>Lakshmi, D Rajya</creator><general>Foundation of Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120101</creationdate><title>A Novel Class Imbalance Learning using Ordering Points Clustering</title><author>Rao, K Nageswara ; Rao, T Venkateswara ; Lakshmi, D Rajya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1303-3d32e9c98fea6280e1c71e8b94eec1374d6ab5f70e2663612f8fec330cdf89dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Data sources</topic><topic>Materials handling</topic><topic>Mathematical models</topic><topic>Order disorder</topic><topic>Proposals</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Rao, K Nageswara</creatorcontrib><creatorcontrib>Rao, T Venkateswara</creatorcontrib><creatorcontrib>Lakshmi, D Rajya</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rao, K Nageswara</au><au>Rao, T Venkateswara</au><au>Lakshmi, D Rajya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Class Imbalance Learning using Ordering Points Clustering</atitle><jtitle>International journal of computer applications</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>51</volume><issue>16</issue><spage>33</spage><epage>42</epage><pages>33-42</pages><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>In Data mining and Knowledge Discovery hidden and valuable knowledge from the data sources is discovered. The traditional algorithms used for knowledge discovery are bottle necked due to wide range of data sources availability. Class imbalance is a one of the problem arises due to data source which provide unequal class i. e. examples of one class in a training data set vastly outnumber examples of the other class(es). This paper proposes a method belonging to under sampling approach which uses OPTICS one of the best visualization clustering technique for handling class imbalance problem. In the proposed approach, further Classification of new data is performed by applying C4. 5 algorithm as the base algorithm. The method is optimized by the selection of the most suitable clusters for deletion of the majority dataset based on visualization algorithms. An experimental analysis is carried out over a wide range of highly imbalanced data sets and uses the statistical tests suggested in the specialized literature. The results obtained show that our novel proposal outperforms other classic and recent models in terms of Area under the ROC Curve, F-measure, precision, TP rate and TN rate.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/8128-1863</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0975-8887 |
ispartof | International journal of computer applications, 2012-01, Vol.51 (16), p.33-42 |
issn | 0975-8887 0975-8887 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671368460 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Clustering Data sources Materials handling Mathematical models Order disorder Proposals Visualization |
title | A Novel Class Imbalance Learning using Ordering Points Clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A47%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Class%20Imbalance%20Learning%20using%20Ordering%20Points%20Clustering&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Rao,%20K%20Nageswara&rft.date=2012-01-01&rft.volume=51&rft.issue=16&rft.spage=33&rft.epage=42&rft.pages=33-42&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/8128-1863&rft_dat=%3Cproquest_cross%3E1671368460%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1095315584&rft_id=info:pmid/&rfr_iscdi=true |