Effect of heat-treatment on the performance of gas barrier layers applied by atomic layer deposition onto polymer-coated paperboard

The effect of heat treatment on the gas barrier of the polymer‐coated board further coated with an Al2O3 layer by atomic layer deposition (ALD) was studied. Heat treatment below the melting point of the polymer followed by quenching at room temperature was used for the polylactide‐coated board [B(PL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2011-11, Vol.122 (4), p.2221-2227
Hauptverfasser: Hirvikorpi, Terhi, Vähä-Nissi, Mika, Vartiainen, Jari, Penttilä, Paavo, Nikkola, Juha, Harlin, Ali, Serimaa, Ritva, Karppinen, Maarit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2227
container_issue 4
container_start_page 2221
container_title Journal of applied polymer science
container_volume 122
creator Hirvikorpi, Terhi
Vähä-Nissi, Mika
Vartiainen, Jari
Penttilä, Paavo
Nikkola, Juha
Harlin, Ali
Serimaa, Ritva
Karppinen, Maarit
description The effect of heat treatment on the gas barrier of the polymer‐coated board further coated with an Al2O3 layer by atomic layer deposition (ALD) was studied. Heat treatment below the melting point of the polymer followed by quenching at room temperature was used for the polylactide‐coated board [B(PLA)], while over‐the‐melting‐point treatment was utilized for the low‐density polyethylene‐coated board [B(PE)] followed by quenching at room temperature or in liquid nitrogen. Heat treatment of B(PLA) and B(PE) followed by quenching at room temperature improved the water vapor barrier. However, because of the changes in the polymer morphology, quenching of B(PE) with liquid nitrogen impaired the same barrier. No improvement in oxygen barrier was observed explained by, e.g., the spherulitic structure of PLA and the discontinuities and possible short‐chain amorphous material around the spherulites forming passages for oxygen molecules. This work emphasizes the importance of a homogeneous surface prior to the ALD growth Al2O3 barrier layer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
doi_str_mv 10.1002/app.34313
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671366194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3277600611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3983-4a4fb7a55e23f8c9f179026fff105d076acb17a46afe24dc7b1e7240c20edd363</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhiMEEkvhwD-whJDgkNaOv5JjVfVLVLAHENysiTOmLkkcbK8gZ_44Xrb0gMTFljzP-4w1U1UvGT1mlDYnsCzHXHDGH1UbRjtdC9W0j6tNqbG67Tr5tHqW0h2ljEmqNtWvc-fQZhIcuUXIdY7lnHAuLzPJt0gWjC7ECWaLe-grJNJDjB4jGWHFmEhpOXocSL8SyGHy9lAgAy4h-eyLKMw5kCWM64SxtgFywRco6j5AHJ5XTxyMCV_c30fVp4vzj2dX9c2Hy-uz05va8q7ltQDheg1SYsNdazvHdEcb5ZxjVA5UK7A90yAUOGzEYHXPUDeC2obiMHDFj6o3B-8Sw_cdpmwmnyyOI8wYdskwpRlXinWioK_-Qe_CLs7ld4ZJptpWtVwX6u2BsjGkFNGZJfoJ4moYNft1mDIb82cdhX19b4RkYXSxTNSnh0AjhJJC7rmTA_fDj7j-X2hOt9u_5vqQ8Cnjz4cExG9Gaa6l-fz-0nC1ffdFttI0_Dd8VamK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1516886837</pqid></control><display><type>article</type><title>Effect of heat-treatment on the performance of gas barrier layers applied by atomic layer deposition onto polymer-coated paperboard</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hirvikorpi, Terhi ; Vähä-Nissi, Mika ; Vartiainen, Jari ; Penttilä, Paavo ; Nikkola, Juha ; Harlin, Ali ; Serimaa, Ritva ; Karppinen, Maarit</creator><creatorcontrib>Hirvikorpi, Terhi ; Vähä-Nissi, Mika ; Vartiainen, Jari ; Penttilä, Paavo ; Nikkola, Juha ; Harlin, Ali ; Serimaa, Ritva ; Karppinen, Maarit</creatorcontrib><description>The effect of heat treatment on the gas barrier of the polymer‐coated board further coated with an Al2O3 layer by atomic layer deposition (ALD) was studied. Heat treatment below the melting point of the polymer followed by quenching at room temperature was used for the polylactide‐coated board [B(PLA)], while over‐the‐melting‐point treatment was utilized for the low‐density polyethylene‐coated board [B(PE)] followed by quenching at room temperature or in liquid nitrogen. Heat treatment of B(PLA) and B(PE) followed by quenching at room temperature improved the water vapor barrier. However, because of the changes in the polymer morphology, quenching of B(PE) with liquid nitrogen impaired the same barrier. No improvement in oxygen barrier was observed explained by, e.g., the spherulitic structure of PLA and the discontinuities and possible short‐chain amorphous material around the spherulites forming passages for oxygen molecules. This work emphasizes the importance of a homogeneous surface prior to the ALD growth Al2O3 barrier layer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011</description><identifier>ISSN: 0021-8995</identifier><identifier>ISSN: 1097-4628</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.34313</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Aluminum oxide ; Application fields ; Applied sciences ; barrier ; Barrier layers ; Barriers ; Deposition ; Discontinuity ; Exact sciences and technology ; gas permeation ; Heat treatment ; Liquid nitrogen ; Materials science ; morphology ; nanolayers ; Paper, paperboard, non wovens ; Polymer industry, paints, wood ; Polymers ; Properties and testing ; Quenching ; Technology of polymers ; thin films ; Wood. Paper. Non wovens</subject><ispartof>Journal of applied polymer science, 2011-11, Vol.122 (4), p.2221-2227</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3983-4a4fb7a55e23f8c9f179026fff105d076acb17a46afe24dc7b1e7240c20edd363</citedby><cites>FETCH-LOGICAL-c3983-4a4fb7a55e23f8c9f179026fff105d076acb17a46afe24dc7b1e7240c20edd363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.34313$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.34313$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24465453$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hirvikorpi, Terhi</creatorcontrib><creatorcontrib>Vähä-Nissi, Mika</creatorcontrib><creatorcontrib>Vartiainen, Jari</creatorcontrib><creatorcontrib>Penttilä, Paavo</creatorcontrib><creatorcontrib>Nikkola, Juha</creatorcontrib><creatorcontrib>Harlin, Ali</creatorcontrib><creatorcontrib>Serimaa, Ritva</creatorcontrib><creatorcontrib>Karppinen, Maarit</creatorcontrib><title>Effect of heat-treatment on the performance of gas barrier layers applied by atomic layer deposition onto polymer-coated paperboard</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>The effect of heat treatment on the gas barrier of the polymer‐coated board further coated with an Al2O3 layer by atomic layer deposition (ALD) was studied. Heat treatment below the melting point of the polymer followed by quenching at room temperature was used for the polylactide‐coated board [B(PLA)], while over‐the‐melting‐point treatment was utilized for the low‐density polyethylene‐coated board [B(PE)] followed by quenching at room temperature or in liquid nitrogen. Heat treatment of B(PLA) and B(PE) followed by quenching at room temperature improved the water vapor barrier. However, because of the changes in the polymer morphology, quenching of B(PE) with liquid nitrogen impaired the same barrier. No improvement in oxygen barrier was observed explained by, e.g., the spherulitic structure of PLA and the discontinuities and possible short‐chain amorphous material around the spherulites forming passages for oxygen molecules. This work emphasizes the importance of a homogeneous surface prior to the ALD growth Al2O3 barrier layer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011</description><subject>Aluminum oxide</subject><subject>Application fields</subject><subject>Applied sciences</subject><subject>barrier</subject><subject>Barrier layers</subject><subject>Barriers</subject><subject>Deposition</subject><subject>Discontinuity</subject><subject>Exact sciences and technology</subject><subject>gas permeation</subject><subject>Heat treatment</subject><subject>Liquid nitrogen</subject><subject>Materials science</subject><subject>morphology</subject><subject>nanolayers</subject><subject>Paper, paperboard, non wovens</subject><subject>Polymer industry, paints, wood</subject><subject>Polymers</subject><subject>Properties and testing</subject><subject>Quenching</subject><subject>Technology of polymers</subject><subject>thin films</subject><subject>Wood. Paper. Non wovens</subject><issn>0021-8995</issn><issn>1097-4628</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kU1v1DAQhiMEEkvhwD-whJDgkNaOv5JjVfVLVLAHENysiTOmLkkcbK8gZ_44Xrb0gMTFljzP-4w1U1UvGT1mlDYnsCzHXHDGH1UbRjtdC9W0j6tNqbG67Tr5tHqW0h2ljEmqNtWvc-fQZhIcuUXIdY7lnHAuLzPJt0gWjC7ECWaLe-grJNJDjB4jGWHFmEhpOXocSL8SyGHy9lAgAy4h-eyLKMw5kCWM64SxtgFywRco6j5AHJ5XTxyMCV_c30fVp4vzj2dX9c2Hy-uz05va8q7ltQDheg1SYsNdazvHdEcb5ZxjVA5UK7A90yAUOGzEYHXPUDeC2obiMHDFj6o3B-8Sw_cdpmwmnyyOI8wYdskwpRlXinWioK_-Qe_CLs7ld4ZJptpWtVwX6u2BsjGkFNGZJfoJ4moYNft1mDIb82cdhX19b4RkYXSxTNSnh0AjhJJC7rmTA_fDj7j-X2hOt9u_5vqQ8Cnjz4cExG9Gaa6l-fz-0nC1ffdFttI0_Dd8VamK</recordid><startdate>20111115</startdate><enddate>20111115</enddate><creator>Hirvikorpi, Terhi</creator><creator>Vähä-Nissi, Mika</creator><creator>Vartiainen, Jari</creator><creator>Penttilä, Paavo</creator><creator>Nikkola, Juha</creator><creator>Harlin, Ali</creator><creator>Serimaa, Ritva</creator><creator>Karppinen, Maarit</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7QF</scope></search><sort><creationdate>20111115</creationdate><title>Effect of heat-treatment on the performance of gas barrier layers applied by atomic layer deposition onto polymer-coated paperboard</title><author>Hirvikorpi, Terhi ; Vähä-Nissi, Mika ; Vartiainen, Jari ; Penttilä, Paavo ; Nikkola, Juha ; Harlin, Ali ; Serimaa, Ritva ; Karppinen, Maarit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3983-4a4fb7a55e23f8c9f179026fff105d076acb17a46afe24dc7b1e7240c20edd363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aluminum oxide</topic><topic>Application fields</topic><topic>Applied sciences</topic><topic>barrier</topic><topic>Barrier layers</topic><topic>Barriers</topic><topic>Deposition</topic><topic>Discontinuity</topic><topic>Exact sciences and technology</topic><topic>gas permeation</topic><topic>Heat treatment</topic><topic>Liquid nitrogen</topic><topic>Materials science</topic><topic>morphology</topic><topic>nanolayers</topic><topic>Paper, paperboard, non wovens</topic><topic>Polymer industry, paints, wood</topic><topic>Polymers</topic><topic>Properties and testing</topic><topic>Quenching</topic><topic>Technology of polymers</topic><topic>thin films</topic><topic>Wood. Paper. Non wovens</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirvikorpi, Terhi</creatorcontrib><creatorcontrib>Vähä-Nissi, Mika</creatorcontrib><creatorcontrib>Vartiainen, Jari</creatorcontrib><creatorcontrib>Penttilä, Paavo</creatorcontrib><creatorcontrib>Nikkola, Juha</creatorcontrib><creatorcontrib>Harlin, Ali</creatorcontrib><creatorcontrib>Serimaa, Ritva</creatorcontrib><creatorcontrib>Karppinen, Maarit</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aluminium Industry Abstracts</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirvikorpi, Terhi</au><au>Vähä-Nissi, Mika</au><au>Vartiainen, Jari</au><au>Penttilä, Paavo</au><au>Nikkola, Juha</au><au>Harlin, Ali</au><au>Serimaa, Ritva</au><au>Karppinen, Maarit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of heat-treatment on the performance of gas barrier layers applied by atomic layer deposition onto polymer-coated paperboard</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2011-11-15</date><risdate>2011</risdate><volume>122</volume><issue>4</issue><spage>2221</spage><epage>2227</epage><pages>2221-2227</pages><issn>0021-8995</issn><issn>1097-4628</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>The effect of heat treatment on the gas barrier of the polymer‐coated board further coated with an Al2O3 layer by atomic layer deposition (ALD) was studied. Heat treatment below the melting point of the polymer followed by quenching at room temperature was used for the polylactide‐coated board [B(PLA)], while over‐the‐melting‐point treatment was utilized for the low‐density polyethylene‐coated board [B(PE)] followed by quenching at room temperature or in liquid nitrogen. Heat treatment of B(PLA) and B(PE) followed by quenching at room temperature improved the water vapor barrier. However, because of the changes in the polymer morphology, quenching of B(PE) with liquid nitrogen impaired the same barrier. No improvement in oxygen barrier was observed explained by, e.g., the spherulitic structure of PLA and the discontinuities and possible short‐chain amorphous material around the spherulites forming passages for oxygen molecules. This work emphasizes the importance of a homogeneous surface prior to the ALD growth Al2O3 barrier layer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.34313</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2011-11, Vol.122 (4), p.2221-2227
issn 0021-8995
1097-4628
1097-4628
language eng
recordid cdi_proquest_miscellaneous_1671366194
source Wiley Online Library Journals Frontfile Complete
subjects Aluminum oxide
Application fields
Applied sciences
barrier
Barrier layers
Barriers
Deposition
Discontinuity
Exact sciences and technology
gas permeation
Heat treatment
Liquid nitrogen
Materials science
morphology
nanolayers
Paper, paperboard, non wovens
Polymer industry, paints, wood
Polymers
Properties and testing
Quenching
Technology of polymers
thin films
Wood. Paper. Non wovens
title Effect of heat-treatment on the performance of gas barrier layers applied by atomic layer deposition onto polymer-coated paperboard
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20heat-treatment%20on%20the%20performance%20of%20gas%20barrier%20layers%20applied%20by%20atomic%20layer%20deposition%20onto%20polymer-coated%20paperboard&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Hirvikorpi,%20Terhi&rft.date=2011-11-15&rft.volume=122&rft.issue=4&rft.spage=2221&rft.epage=2227&rft.pages=2221-2227&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.34313&rft_dat=%3Cproquest_cross%3E3277600611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1516886837&rft_id=info:pmid/&rfr_iscdi=true