Effect of heat-treatment on the performance of gas barrier layers applied by atomic layer deposition onto polymer-coated paperboard
The effect of heat treatment on the gas barrier of the polymer‐coated board further coated with an Al2O3 layer by atomic layer deposition (ALD) was studied. Heat treatment below the melting point of the polymer followed by quenching at room temperature was used for the polylactide‐coated board [B(PL...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2011-11, Vol.122 (4), p.2221-2227 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2227 |
---|---|
container_issue | 4 |
container_start_page | 2221 |
container_title | Journal of applied polymer science |
container_volume | 122 |
creator | Hirvikorpi, Terhi Vähä-Nissi, Mika Vartiainen, Jari Penttilä, Paavo Nikkola, Juha Harlin, Ali Serimaa, Ritva Karppinen, Maarit |
description | The effect of heat treatment on the gas barrier of the polymer‐coated board further coated with an Al2O3 layer by atomic layer deposition (ALD) was studied. Heat treatment below the melting point of the polymer followed by quenching at room temperature was used for the polylactide‐coated board [B(PLA)], while over‐the‐melting‐point treatment was utilized for the low‐density polyethylene‐coated board [B(PE)] followed by quenching at room temperature or in liquid nitrogen. Heat treatment of B(PLA) and B(PE) followed by quenching at room temperature improved the water vapor barrier. However, because of the changes in the polymer morphology, quenching of B(PE) with liquid nitrogen impaired the same barrier. No improvement in oxygen barrier was observed explained by, e.g., the spherulitic structure of PLA and the discontinuities and possible short‐chain amorphous material around the spherulites forming passages for oxygen molecules. This work emphasizes the importance of a homogeneous surface prior to the ALD growth Al2O3 barrier layer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 |
doi_str_mv | 10.1002/app.34313 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671366194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3277600611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3983-4a4fb7a55e23f8c9f179026fff105d076acb17a46afe24dc7b1e7240c20edd363</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhiMEEkvhwD-whJDgkNaOv5JjVfVLVLAHENysiTOmLkkcbK8gZ_44Xrb0gMTFljzP-4w1U1UvGT1mlDYnsCzHXHDGH1UbRjtdC9W0j6tNqbG67Tr5tHqW0h2ljEmqNtWvc-fQZhIcuUXIdY7lnHAuLzPJt0gWjC7ECWaLe-grJNJDjB4jGWHFmEhpOXocSL8SyGHy9lAgAy4h-eyLKMw5kCWM64SxtgFywRco6j5AHJ5XTxyMCV_c30fVp4vzj2dX9c2Hy-uz05va8q7ltQDheg1SYsNdazvHdEcb5ZxjVA5UK7A90yAUOGzEYHXPUDeC2obiMHDFj6o3B-8Sw_cdpmwmnyyOI8wYdskwpRlXinWioK_-Qe_CLs7ld4ZJptpWtVwX6u2BsjGkFNGZJfoJ4moYNft1mDIb82cdhX19b4RkYXSxTNSnh0AjhJJC7rmTA_fDj7j-X2hOt9u_5vqQ8Cnjz4cExG9Gaa6l-fz-0nC1ffdFttI0_Dd8VamK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1516886837</pqid></control><display><type>article</type><title>Effect of heat-treatment on the performance of gas barrier layers applied by atomic layer deposition onto polymer-coated paperboard</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hirvikorpi, Terhi ; Vähä-Nissi, Mika ; Vartiainen, Jari ; Penttilä, Paavo ; Nikkola, Juha ; Harlin, Ali ; Serimaa, Ritva ; Karppinen, Maarit</creator><creatorcontrib>Hirvikorpi, Terhi ; Vähä-Nissi, Mika ; Vartiainen, Jari ; Penttilä, Paavo ; Nikkola, Juha ; Harlin, Ali ; Serimaa, Ritva ; Karppinen, Maarit</creatorcontrib><description>The effect of heat treatment on the gas barrier of the polymer‐coated board further coated with an Al2O3 layer by atomic layer deposition (ALD) was studied. Heat treatment below the melting point of the polymer followed by quenching at room temperature was used for the polylactide‐coated board [B(PLA)], while over‐the‐melting‐point treatment was utilized for the low‐density polyethylene‐coated board [B(PE)] followed by quenching at room temperature or in liquid nitrogen. Heat treatment of B(PLA) and B(PE) followed by quenching at room temperature improved the water vapor barrier. However, because of the changes in the polymer morphology, quenching of B(PE) with liquid nitrogen impaired the same barrier. No improvement in oxygen barrier was observed explained by, e.g., the spherulitic structure of PLA and the discontinuities and possible short‐chain amorphous material around the spherulites forming passages for oxygen molecules. This work emphasizes the importance of a homogeneous surface prior to the ALD growth Al2O3 barrier layer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011</description><identifier>ISSN: 0021-8995</identifier><identifier>ISSN: 1097-4628</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.34313</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Aluminum oxide ; Application fields ; Applied sciences ; barrier ; Barrier layers ; Barriers ; Deposition ; Discontinuity ; Exact sciences and technology ; gas permeation ; Heat treatment ; Liquid nitrogen ; Materials science ; morphology ; nanolayers ; Paper, paperboard, non wovens ; Polymer industry, paints, wood ; Polymers ; Properties and testing ; Quenching ; Technology of polymers ; thin films ; Wood. Paper. Non wovens</subject><ispartof>Journal of applied polymer science, 2011-11, Vol.122 (4), p.2221-2227</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3983-4a4fb7a55e23f8c9f179026fff105d076acb17a46afe24dc7b1e7240c20edd363</citedby><cites>FETCH-LOGICAL-c3983-4a4fb7a55e23f8c9f179026fff105d076acb17a46afe24dc7b1e7240c20edd363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.34313$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.34313$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24465453$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hirvikorpi, Terhi</creatorcontrib><creatorcontrib>Vähä-Nissi, Mika</creatorcontrib><creatorcontrib>Vartiainen, Jari</creatorcontrib><creatorcontrib>Penttilä, Paavo</creatorcontrib><creatorcontrib>Nikkola, Juha</creatorcontrib><creatorcontrib>Harlin, Ali</creatorcontrib><creatorcontrib>Serimaa, Ritva</creatorcontrib><creatorcontrib>Karppinen, Maarit</creatorcontrib><title>Effect of heat-treatment on the performance of gas barrier layers applied by atomic layer deposition onto polymer-coated paperboard</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>The effect of heat treatment on the gas barrier of the polymer‐coated board further coated with an Al2O3 layer by atomic layer deposition (ALD) was studied. Heat treatment below the melting point of the polymer followed by quenching at room temperature was used for the polylactide‐coated board [B(PLA)], while over‐the‐melting‐point treatment was utilized for the low‐density polyethylene‐coated board [B(PE)] followed by quenching at room temperature or in liquid nitrogen. Heat treatment of B(PLA) and B(PE) followed by quenching at room temperature improved the water vapor barrier. However, because of the changes in the polymer morphology, quenching of B(PE) with liquid nitrogen impaired the same barrier. No improvement in oxygen barrier was observed explained by, e.g., the spherulitic structure of PLA and the discontinuities and possible short‐chain amorphous material around the spherulites forming passages for oxygen molecules. This work emphasizes the importance of a homogeneous surface prior to the ALD growth Al2O3 barrier layer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011</description><subject>Aluminum oxide</subject><subject>Application fields</subject><subject>Applied sciences</subject><subject>barrier</subject><subject>Barrier layers</subject><subject>Barriers</subject><subject>Deposition</subject><subject>Discontinuity</subject><subject>Exact sciences and technology</subject><subject>gas permeation</subject><subject>Heat treatment</subject><subject>Liquid nitrogen</subject><subject>Materials science</subject><subject>morphology</subject><subject>nanolayers</subject><subject>Paper, paperboard, non wovens</subject><subject>Polymer industry, paints, wood</subject><subject>Polymers</subject><subject>Properties and testing</subject><subject>Quenching</subject><subject>Technology of polymers</subject><subject>thin films</subject><subject>Wood. Paper. Non wovens</subject><issn>0021-8995</issn><issn>1097-4628</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kU1v1DAQhiMEEkvhwD-whJDgkNaOv5JjVfVLVLAHENysiTOmLkkcbK8gZ_44Xrb0gMTFljzP-4w1U1UvGT1mlDYnsCzHXHDGH1UbRjtdC9W0j6tNqbG67Tr5tHqW0h2ljEmqNtWvc-fQZhIcuUXIdY7lnHAuLzPJt0gWjC7ECWaLe-grJNJDjB4jGWHFmEhpOXocSL8SyGHy9lAgAy4h-eyLKMw5kCWM64SxtgFywRco6j5AHJ5XTxyMCV_c30fVp4vzj2dX9c2Hy-uz05va8q7ltQDheg1SYsNdazvHdEcb5ZxjVA5UK7A90yAUOGzEYHXPUDeC2obiMHDFj6o3B-8Sw_cdpmwmnyyOI8wYdskwpRlXinWioK_-Qe_CLs7ld4ZJptpWtVwX6u2BsjGkFNGZJfoJ4moYNft1mDIb82cdhX19b4RkYXSxTNSnh0AjhJJC7rmTA_fDj7j-X2hOt9u_5vqQ8Cnjz4cExG9Gaa6l-fz-0nC1ffdFttI0_Dd8VamK</recordid><startdate>20111115</startdate><enddate>20111115</enddate><creator>Hirvikorpi, Terhi</creator><creator>Vähä-Nissi, Mika</creator><creator>Vartiainen, Jari</creator><creator>Penttilä, Paavo</creator><creator>Nikkola, Juha</creator><creator>Harlin, Ali</creator><creator>Serimaa, Ritva</creator><creator>Karppinen, Maarit</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7QF</scope></search><sort><creationdate>20111115</creationdate><title>Effect of heat-treatment on the performance of gas barrier layers applied by atomic layer deposition onto polymer-coated paperboard</title><author>Hirvikorpi, Terhi ; Vähä-Nissi, Mika ; Vartiainen, Jari ; Penttilä, Paavo ; Nikkola, Juha ; Harlin, Ali ; Serimaa, Ritva ; Karppinen, Maarit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3983-4a4fb7a55e23f8c9f179026fff105d076acb17a46afe24dc7b1e7240c20edd363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aluminum oxide</topic><topic>Application fields</topic><topic>Applied sciences</topic><topic>barrier</topic><topic>Barrier layers</topic><topic>Barriers</topic><topic>Deposition</topic><topic>Discontinuity</topic><topic>Exact sciences and technology</topic><topic>gas permeation</topic><topic>Heat treatment</topic><topic>Liquid nitrogen</topic><topic>Materials science</topic><topic>morphology</topic><topic>nanolayers</topic><topic>Paper, paperboard, non wovens</topic><topic>Polymer industry, paints, wood</topic><topic>Polymers</topic><topic>Properties and testing</topic><topic>Quenching</topic><topic>Technology of polymers</topic><topic>thin films</topic><topic>Wood. Paper. Non wovens</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirvikorpi, Terhi</creatorcontrib><creatorcontrib>Vähä-Nissi, Mika</creatorcontrib><creatorcontrib>Vartiainen, Jari</creatorcontrib><creatorcontrib>Penttilä, Paavo</creatorcontrib><creatorcontrib>Nikkola, Juha</creatorcontrib><creatorcontrib>Harlin, Ali</creatorcontrib><creatorcontrib>Serimaa, Ritva</creatorcontrib><creatorcontrib>Karppinen, Maarit</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aluminium Industry Abstracts</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirvikorpi, Terhi</au><au>Vähä-Nissi, Mika</au><au>Vartiainen, Jari</au><au>Penttilä, Paavo</au><au>Nikkola, Juha</au><au>Harlin, Ali</au><au>Serimaa, Ritva</au><au>Karppinen, Maarit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of heat-treatment on the performance of gas barrier layers applied by atomic layer deposition onto polymer-coated paperboard</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2011-11-15</date><risdate>2011</risdate><volume>122</volume><issue>4</issue><spage>2221</spage><epage>2227</epage><pages>2221-2227</pages><issn>0021-8995</issn><issn>1097-4628</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>The effect of heat treatment on the gas barrier of the polymer‐coated board further coated with an Al2O3 layer by atomic layer deposition (ALD) was studied. Heat treatment below the melting point of the polymer followed by quenching at room temperature was used for the polylactide‐coated board [B(PLA)], while over‐the‐melting‐point treatment was utilized for the low‐density polyethylene‐coated board [B(PE)] followed by quenching at room temperature or in liquid nitrogen. Heat treatment of B(PLA) and B(PE) followed by quenching at room temperature improved the water vapor barrier. However, because of the changes in the polymer morphology, quenching of B(PE) with liquid nitrogen impaired the same barrier. No improvement in oxygen barrier was observed explained by, e.g., the spherulitic structure of PLA and the discontinuities and possible short‐chain amorphous material around the spherulites forming passages for oxygen molecules. This work emphasizes the importance of a homogeneous surface prior to the ALD growth Al2O3 barrier layer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.34313</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2011-11, Vol.122 (4), p.2221-2227 |
issn | 0021-8995 1097-4628 1097-4628 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671366194 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Aluminum oxide Application fields Applied sciences barrier Barrier layers Barriers Deposition Discontinuity Exact sciences and technology gas permeation Heat treatment Liquid nitrogen Materials science morphology nanolayers Paper, paperboard, non wovens Polymer industry, paints, wood Polymers Properties and testing Quenching Technology of polymers thin films Wood. Paper. Non wovens |
title | Effect of heat-treatment on the performance of gas barrier layers applied by atomic layer deposition onto polymer-coated paperboard |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20heat-treatment%20on%20the%20performance%20of%20gas%20barrier%20layers%20applied%20by%20atomic%20layer%20deposition%20onto%20polymer-coated%20paperboard&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Hirvikorpi,%20Terhi&rft.date=2011-11-15&rft.volume=122&rft.issue=4&rft.spage=2221&rft.epage=2227&rft.pages=2221-2227&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.34313&rft_dat=%3Cproquest_cross%3E3277600611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1516886837&rft_id=info:pmid/&rfr_iscdi=true |