Adaptive phase field modeling of grain boundary diffusion

The phase field modeling (PFM) has emerged as a powerful tool for the simulation of the solidification of polycrystalline alloys. The use of the diffusive interface in PFM allows the treatment of the complicated morphology. However, in dealing with the grain boundary diffusion, it is difficult to si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2011-03, Vol.318 (1), p.46-50
Hauptverfasser: Yeh, S.Y., Chen, C.C., Lan, C.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50
container_issue 1
container_start_page 46
container_title Journal of crystal growth
container_volume 318
creator Yeh, S.Y.
Chen, C.C.
Lan, C.W.
description The phase field modeling (PFM) has emerged as a powerful tool for the simulation of the solidification of polycrystalline alloys. The use of the diffusive interface in PFM allows the treatment of the complicated morphology. However, in dealing with the grain boundary diffusion, it is difficult to simulate the diffusion process that is independent of the interface thickness. To amend this, we propose a model that imbeds a grain boundary diffusion term in the existing adaptive phase field model. In this new model, the simulated solute transport is independent of the interface thickness, and the simulated grain boundary diffusion is in good agreement with the classic solution.
doi_str_mv 10.1016/j.jcrysgro.2010.10.091
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671365872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024810008225</els_id><sourcerecordid>1671365872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-469bd18092c83e7d0f3192268ec771c886fbdf2e2eb6d3ea355cbc67a7acc2b3</originalsourceid><addsrcrecordid>eNqFkElrwzAQhUVpoenyF4ovhV7sarEl-9YQukGgl9yFLI1SGcdKJTuQf1-lSXvtZQYe783yIXRHcEEw4Y9d0emwj-vgC4p_xAI35AzNSC1YXmFMz9EsVZpjWtaX6CrGDuOUJHiGmrlR29HtINt-qgiZddCbbOMN9G5YZ95m66DckLV-GowK-8w4a6fo_HCDLqzqI9ye-jVavTyvFm_58uP1fTFf5pqJasxL3rSG1LihumYgDLaMNJTyGrQQRNc1t62xFCi03DBQrKp0q7lQQmlNW3aNHo5jt8F_TRBHuXFRQ9-rAfwUJeGCMF7VgiYrP1p18DEGsHIb3CYdLQmWB1Syk7-o5AHVQU-oUvD-tENFrXob1KBd_EvTEtOqxFXyPR19kP7dOQgyageDBuMC6FEa7_5b9Q3F-4Lq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671365872</pqid></control><display><type>article</type><title>Adaptive phase field modeling of grain boundary diffusion</title><source>Elsevier ScienceDirect Journals</source><creator>Yeh, S.Y. ; Chen, C.C. ; Lan, C.W.</creator><creatorcontrib>Yeh, S.Y. ; Chen, C.C. ; Lan, C.W.</creatorcontrib><description>The phase field modeling (PFM) has emerged as a powerful tool for the simulation of the solidification of polycrystalline alloys. The use of the diffusive interface in PFM allows the treatment of the complicated morphology. However, in dealing with the grain boundary diffusion, it is difficult to simulate the diffusion process that is independent of the interface thickness. To amend this, we propose a model that imbeds a grain boundary diffusion term in the existing adaptive phase field model. In this new model, the simulated solute transport is independent of the interface thickness, and the simulated grain boundary diffusion is in good agreement with the classic solution.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2010.10.091</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Phase field model ; A1. Solidification ; Alloys ; B1. Grain boundary diffusion ; B1. Polycrystalline alloy ; Computer simulation ; Cross-disciplinary physics: materials science; rheology ; Crystal growth ; Dealing ; Diffusion ; Exact sciences and technology ; Grain boundary diffusion ; Materials science ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Solidification</subject><ispartof>Journal of crystal growth, 2011-03, Vol.318 (1), p.46-50</ispartof><rights>2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-469bd18092c83e7d0f3192268ec771c886fbdf2e2eb6d3ea355cbc67a7acc2b3</citedby><cites>FETCH-LOGICAL-c375t-469bd18092c83e7d0f3192268ec771c886fbdf2e2eb6d3ea355cbc67a7acc2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022024810008225$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3536,23910,23911,25119,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24025405$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yeh, S.Y.</creatorcontrib><creatorcontrib>Chen, C.C.</creatorcontrib><creatorcontrib>Lan, C.W.</creatorcontrib><title>Adaptive phase field modeling of grain boundary diffusion</title><title>Journal of crystal growth</title><description>The phase field modeling (PFM) has emerged as a powerful tool for the simulation of the solidification of polycrystalline alloys. The use of the diffusive interface in PFM allows the treatment of the complicated morphology. However, in dealing with the grain boundary diffusion, it is difficult to simulate the diffusion process that is independent of the interface thickness. To amend this, we propose a model that imbeds a grain boundary diffusion term in the existing adaptive phase field model. In this new model, the simulated solute transport is independent of the interface thickness, and the simulated grain boundary diffusion is in good agreement with the classic solution.</description><subject>A1. Phase field model</subject><subject>A1. Solidification</subject><subject>Alloys</subject><subject>B1. Grain boundary diffusion</subject><subject>B1. Polycrystalline alloy</subject><subject>Computer simulation</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystal growth</subject><subject>Dealing</subject><subject>Diffusion</subject><subject>Exact sciences and technology</subject><subject>Grain boundary diffusion</subject><subject>Materials science</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Solidification</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkElrwzAQhUVpoenyF4ovhV7sarEl-9YQukGgl9yFLI1SGcdKJTuQf1-lSXvtZQYe783yIXRHcEEw4Y9d0emwj-vgC4p_xAI35AzNSC1YXmFMz9EsVZpjWtaX6CrGDuOUJHiGmrlR29HtINt-qgiZddCbbOMN9G5YZ95m66DckLV-GowK-8w4a6fo_HCDLqzqI9ye-jVavTyvFm_58uP1fTFf5pqJasxL3rSG1LihumYgDLaMNJTyGrQQRNc1t62xFCi03DBQrKp0q7lQQmlNW3aNHo5jt8F_TRBHuXFRQ9-rAfwUJeGCMF7VgiYrP1p18DEGsHIb3CYdLQmWB1Syk7-o5AHVQU-oUvD-tENFrXob1KBd_EvTEtOqxFXyPR19kP7dOQgyageDBuMC6FEa7_5b9Q3F-4Lq</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Yeh, S.Y.</creator><creator>Chen, C.C.</creator><creator>Lan, C.W.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110301</creationdate><title>Adaptive phase field modeling of grain boundary diffusion</title><author>Yeh, S.Y. ; Chen, C.C. ; Lan, C.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-469bd18092c83e7d0f3192268ec771c886fbdf2e2eb6d3ea355cbc67a7acc2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>A1. Phase field model</topic><topic>A1. Solidification</topic><topic>Alloys</topic><topic>B1. Grain boundary diffusion</topic><topic>B1. Polycrystalline alloy</topic><topic>Computer simulation</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystal growth</topic><topic>Dealing</topic><topic>Diffusion</topic><topic>Exact sciences and technology</topic><topic>Grain boundary diffusion</topic><topic>Materials science</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Solidification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeh, S.Y.</creatorcontrib><creatorcontrib>Chen, C.C.</creatorcontrib><creatorcontrib>Lan, C.W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeh, S.Y.</au><au>Chen, C.C.</au><au>Lan, C.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive phase field modeling of grain boundary diffusion</atitle><jtitle>Journal of crystal growth</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>318</volume><issue>1</issue><spage>46</spage><epage>50</epage><pages>46-50</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>The phase field modeling (PFM) has emerged as a powerful tool for the simulation of the solidification of polycrystalline alloys. The use of the diffusive interface in PFM allows the treatment of the complicated morphology. However, in dealing with the grain boundary diffusion, it is difficult to simulate the diffusion process that is independent of the interface thickness. To amend this, we propose a model that imbeds a grain boundary diffusion term in the existing adaptive phase field model. In this new model, the simulated solute transport is independent of the interface thickness, and the simulated grain boundary diffusion is in good agreement with the classic solution.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2010.10.091</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2011-03, Vol.318 (1), p.46-50
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_miscellaneous_1671365872
source Elsevier ScienceDirect Journals
subjects A1. Phase field model
A1. Solidification
Alloys
B1. Grain boundary diffusion
B1. Polycrystalline alloy
Computer simulation
Cross-disciplinary physics: materials science
rheology
Crystal growth
Dealing
Diffusion
Exact sciences and technology
Grain boundary diffusion
Materials science
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
Physics
Solidification
title Adaptive phase field modeling of grain boundary diffusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20phase%20field%20modeling%20of%20grain%20boundary%20diffusion&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Yeh,%20S.Y.&rft.date=2011-03-01&rft.volume=318&rft.issue=1&rft.spage=46&rft.epage=50&rft.pages=46-50&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2010.10.091&rft_dat=%3Cproquest_cross%3E1671365872%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671365872&rft_id=info:pmid/&rft_els_id=S0022024810008225&rfr_iscdi=true