Adaptive phase field modeling of grain boundary diffusion
The phase field modeling (PFM) has emerged as a powerful tool for the simulation of the solidification of polycrystalline alloys. The use of the diffusive interface in PFM allows the treatment of the complicated morphology. However, in dealing with the grain boundary diffusion, it is difficult to si...
Gespeichert in:
Veröffentlicht in: | Journal of crystal growth 2011-03, Vol.318 (1), p.46-50 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 50 |
---|---|
container_issue | 1 |
container_start_page | 46 |
container_title | Journal of crystal growth |
container_volume | 318 |
creator | Yeh, S.Y. Chen, C.C. Lan, C.W. |
description | The phase field modeling (PFM) has emerged as a powerful tool for the simulation of the solidification of polycrystalline alloys. The use of the diffusive interface in PFM allows the treatment of the complicated morphology. However, in dealing with the grain boundary diffusion, it is difficult to simulate the diffusion process that is independent of the interface thickness. To amend this, we propose a model that imbeds a grain boundary diffusion term in the existing adaptive phase field model. In this new model, the simulated solute transport is independent of the interface thickness, and the simulated grain boundary diffusion is in good agreement with the classic solution. |
doi_str_mv | 10.1016/j.jcrysgro.2010.10.091 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671365872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024810008225</els_id><sourcerecordid>1671365872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-469bd18092c83e7d0f3192268ec771c886fbdf2e2eb6d3ea355cbc67a7acc2b3</originalsourceid><addsrcrecordid>eNqFkElrwzAQhUVpoenyF4ovhV7sarEl-9YQukGgl9yFLI1SGcdKJTuQf1-lSXvtZQYe783yIXRHcEEw4Y9d0emwj-vgC4p_xAI35AzNSC1YXmFMz9EsVZpjWtaX6CrGDuOUJHiGmrlR29HtINt-qgiZddCbbOMN9G5YZ95m66DckLV-GowK-8w4a6fo_HCDLqzqI9ye-jVavTyvFm_58uP1fTFf5pqJasxL3rSG1LihumYgDLaMNJTyGrQQRNc1t62xFCi03DBQrKp0q7lQQmlNW3aNHo5jt8F_TRBHuXFRQ9-rAfwUJeGCMF7VgiYrP1p18DEGsHIb3CYdLQmWB1Syk7-o5AHVQU-oUvD-tENFrXob1KBd_EvTEtOqxFXyPR19kP7dOQgyageDBuMC6FEa7_5b9Q3F-4Lq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671365872</pqid></control><display><type>article</type><title>Adaptive phase field modeling of grain boundary diffusion</title><source>Elsevier ScienceDirect Journals</source><creator>Yeh, S.Y. ; Chen, C.C. ; Lan, C.W.</creator><creatorcontrib>Yeh, S.Y. ; Chen, C.C. ; Lan, C.W.</creatorcontrib><description>The phase field modeling (PFM) has emerged as a powerful tool for the simulation of the solidification of polycrystalline alloys. The use of the diffusive interface in PFM allows the treatment of the complicated morphology. However, in dealing with the grain boundary diffusion, it is difficult to simulate the diffusion process that is independent of the interface thickness. To amend this, we propose a model that imbeds a grain boundary diffusion term in the existing adaptive phase field model. In this new model, the simulated solute transport is independent of the interface thickness, and the simulated grain boundary diffusion is in good agreement with the classic solution.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2010.10.091</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Phase field model ; A1. Solidification ; Alloys ; B1. Grain boundary diffusion ; B1. Polycrystalline alloy ; Computer simulation ; Cross-disciplinary physics: materials science; rheology ; Crystal growth ; Dealing ; Diffusion ; Exact sciences and technology ; Grain boundary diffusion ; Materials science ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Solidification</subject><ispartof>Journal of crystal growth, 2011-03, Vol.318 (1), p.46-50</ispartof><rights>2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-469bd18092c83e7d0f3192268ec771c886fbdf2e2eb6d3ea355cbc67a7acc2b3</citedby><cites>FETCH-LOGICAL-c375t-469bd18092c83e7d0f3192268ec771c886fbdf2e2eb6d3ea355cbc67a7acc2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022024810008225$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3536,23910,23911,25119,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24025405$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yeh, S.Y.</creatorcontrib><creatorcontrib>Chen, C.C.</creatorcontrib><creatorcontrib>Lan, C.W.</creatorcontrib><title>Adaptive phase field modeling of grain boundary diffusion</title><title>Journal of crystal growth</title><description>The phase field modeling (PFM) has emerged as a powerful tool for the simulation of the solidification of polycrystalline alloys. The use of the diffusive interface in PFM allows the treatment of the complicated morphology. However, in dealing with the grain boundary diffusion, it is difficult to simulate the diffusion process that is independent of the interface thickness. To amend this, we propose a model that imbeds a grain boundary diffusion term in the existing adaptive phase field model. In this new model, the simulated solute transport is independent of the interface thickness, and the simulated grain boundary diffusion is in good agreement with the classic solution.</description><subject>A1. Phase field model</subject><subject>A1. Solidification</subject><subject>Alloys</subject><subject>B1. Grain boundary diffusion</subject><subject>B1. Polycrystalline alloy</subject><subject>Computer simulation</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystal growth</subject><subject>Dealing</subject><subject>Diffusion</subject><subject>Exact sciences and technology</subject><subject>Grain boundary diffusion</subject><subject>Materials science</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Solidification</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkElrwzAQhUVpoenyF4ovhV7sarEl-9YQukGgl9yFLI1SGcdKJTuQf1-lSXvtZQYe783yIXRHcEEw4Y9d0emwj-vgC4p_xAI35AzNSC1YXmFMz9EsVZpjWtaX6CrGDuOUJHiGmrlR29HtINt-qgiZddCbbOMN9G5YZ95m66DckLV-GowK-8w4a6fo_HCDLqzqI9ye-jVavTyvFm_58uP1fTFf5pqJasxL3rSG1LihumYgDLaMNJTyGrQQRNc1t62xFCi03DBQrKp0q7lQQmlNW3aNHo5jt8F_TRBHuXFRQ9-rAfwUJeGCMF7VgiYrP1p18DEGsHIb3CYdLQmWB1Syk7-o5AHVQU-oUvD-tENFrXob1KBd_EvTEtOqxFXyPR19kP7dOQgyageDBuMC6FEa7_5b9Q3F-4Lq</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Yeh, S.Y.</creator><creator>Chen, C.C.</creator><creator>Lan, C.W.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110301</creationdate><title>Adaptive phase field modeling of grain boundary diffusion</title><author>Yeh, S.Y. ; Chen, C.C. ; Lan, C.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-469bd18092c83e7d0f3192268ec771c886fbdf2e2eb6d3ea355cbc67a7acc2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>A1. Phase field model</topic><topic>A1. Solidification</topic><topic>Alloys</topic><topic>B1. Grain boundary diffusion</topic><topic>B1. Polycrystalline alloy</topic><topic>Computer simulation</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystal growth</topic><topic>Dealing</topic><topic>Diffusion</topic><topic>Exact sciences and technology</topic><topic>Grain boundary diffusion</topic><topic>Materials science</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Solidification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeh, S.Y.</creatorcontrib><creatorcontrib>Chen, C.C.</creatorcontrib><creatorcontrib>Lan, C.W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeh, S.Y.</au><au>Chen, C.C.</au><au>Lan, C.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive phase field modeling of grain boundary diffusion</atitle><jtitle>Journal of crystal growth</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>318</volume><issue>1</issue><spage>46</spage><epage>50</epage><pages>46-50</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>The phase field modeling (PFM) has emerged as a powerful tool for the simulation of the solidification of polycrystalline alloys. The use of the diffusive interface in PFM allows the treatment of the complicated morphology. However, in dealing with the grain boundary diffusion, it is difficult to simulate the diffusion process that is independent of the interface thickness. To amend this, we propose a model that imbeds a grain boundary diffusion term in the existing adaptive phase field model. In this new model, the simulated solute transport is independent of the interface thickness, and the simulated grain boundary diffusion is in good agreement with the classic solution.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2010.10.091</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2011-03, Vol.318 (1), p.46-50 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671365872 |
source | Elsevier ScienceDirect Journals |
subjects | A1. Phase field model A1. Solidification Alloys B1. Grain boundary diffusion B1. Polycrystalline alloy Computer simulation Cross-disciplinary physics: materials science rheology Crystal growth Dealing Diffusion Exact sciences and technology Grain boundary diffusion Materials science Phase diagrams and microstructures developed by solidification and solid-solid phase transformations Physics Solidification |
title | Adaptive phase field modeling of grain boundary diffusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20phase%20field%20modeling%20of%20grain%20boundary%20diffusion&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Yeh,%20S.Y.&rft.date=2011-03-01&rft.volume=318&rft.issue=1&rft.spage=46&rft.epage=50&rft.pages=46-50&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2010.10.091&rft_dat=%3Cproquest_cross%3E1671365872%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671365872&rft_id=info:pmid/&rft_els_id=S0022024810008225&rfr_iscdi=true |