Micro-alumina particle volatilization temperature measurements in a heterogeneous shock tube
Peak flame temperatures in aluminum particle combustion should approach the volatilization temperature of the product alumina. References are divided in assigning this temperature anywhere between 3200 and 4000 K, which can provide significant uncertainty not only in numerical models for combustion...
Gespeichert in:
Veröffentlicht in: | Combustion and flame 2012-02, Vol.159 (2), p.793-801 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 801 |
---|---|
container_issue | 2 |
container_start_page | 793 |
container_title | Combustion and flame |
container_volume | 159 |
creator | Lynch, Patrick Krier, Herman Glumac, Nick |
description | Peak flame temperatures in aluminum particle combustion should approach the volatilization temperature of the product alumina. References are divided in assigning this temperature anywhere between 3200 and 4000
K, which can provide significant uncertainty not only in numerical models for combustion but also in the interpretation of flame structure from temperature measurements. We present results in the controlled conditions of the UIUC heterogeneous shock tube of volatilization temperature, made by measuring the extinction of light by nano- and micro-alumina particles at non-resonant wavelengths at different ambient temperatures. At 10
atm, there is a sharp cutoff at 3860
K beyond which nano-particles volatilize and stop extinguishing within the shock tube test time. Numerical modeling of the evaporation rate of these particles is used to assign a volatilization temperature of 4340
K at 10
atm. Similarly, a volatilization temperature of 4260
K at 3
atm is measured. From our analysis, the best estimate for the volatilization temperature at 1
atm was 4189
±
200
K, which is consistent with the high range of volatilization temperature reported in the literature. |
doi_str_mv | 10.1016/j.combustflame.2011.07.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671364334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218011002550</els_id><sourcerecordid>1671364334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-503250e91fc2b2c9febe9080a02db05881a30e84e7cdbd506c8010951e9239813</originalsourceid><addsrcrecordid>eNqNkE9v1DAQxS1EJZaW72AhIXFJmLHX-cMNFVqQWvXS3pAsx5lQL0682E6l8unrslXVI5d5lzdv5v0Ye49QI2DzaVfbMA9rypM3M9UCEGtoaxDyFdugUk0leoGv2QYAoRLYwRv2NqUdALRbKTfs56WzMVTGr7NbDN-bmJ31xO-CN9l597fMsPBM856iyWskPpNJRWdacuJu4YbfUqYYftFCYU083Qb7m-d1oBN2NBmf6N2THrObs2_Xp9-ri6vzH6dfLioruzZXCqRQQD1OVgzC9hMN1EMHBsQ4gOo6NBKo21Jrx2FU0NiutOkVUi9k36E8Zh8PufsY_qyUsp5dsuS9-feRxqZF2ZS-22L9fLCW1ilFmvQ-utnEe42gH5HqnX6JVD8i1dDqgrQsf3i6Y5I1fopmsS49JwilAPsGiu_rwUel9J2jqJN1tFgaXSSb9Rjc_5x7AJHJlQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671364334</pqid></control><display><type>article</type><title>Micro-alumina particle volatilization temperature measurements in a heterogeneous shock tube</title><source>Elsevier ScienceDirect Journals</source><creator>Lynch, Patrick ; Krier, Herman ; Glumac, Nick</creator><creatorcontrib>Lynch, Patrick ; Krier, Herman ; Glumac, Nick</creatorcontrib><description>Peak flame temperatures in aluminum particle combustion should approach the volatilization temperature of the product alumina. References are divided in assigning this temperature anywhere between 3200 and 4000
K, which can provide significant uncertainty not only in numerical models for combustion but also in the interpretation of flame structure from temperature measurements. We present results in the controlled conditions of the UIUC heterogeneous shock tube of volatilization temperature, made by measuring the extinction of light by nano- and micro-alumina particles at non-resonant wavelengths at different ambient temperatures. At 10
atm, there is a sharp cutoff at 3860
K beyond which nano-particles volatilize and stop extinguishing within the shock tube test time. Numerical modeling of the evaporation rate of these particles is used to assign a volatilization temperature of 4340
K at 10
atm. Similarly, a volatilization temperature of 4260
K at 3
atm is measured. From our analysis, the best estimate for the volatilization temperature at 1
atm was 4189
±
200
K, which is consistent with the high range of volatilization temperature reported in the literature.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2011.07.023</identifier><identifier>CODEN: CBFMAO</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>AlO ; Aluminum ; Aluminum combustion ; Aluminum monoxide ; Applied sciences ; Cloud extinction ; Combustion ; Combustion. Flame ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Mathematical models ; Nanocomposites ; Nanomaterials ; Nanostructure ; Shock tubes ; Temperature fitting ; Temperature measurement ; Theoretical studies. Data and constants. Metering</subject><ispartof>Combustion and flame, 2012-02, Vol.159 (2), p.793-801</ispartof><rights>2011 The Combustion Institute.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-503250e91fc2b2c9febe9080a02db05881a30e84e7cdbd506c8010951e9239813</citedby><cites>FETCH-LOGICAL-c387t-503250e91fc2b2c9febe9080a02db05881a30e84e7cdbd506c8010951e9239813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010218011002550$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25501960$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lynch, Patrick</creatorcontrib><creatorcontrib>Krier, Herman</creatorcontrib><creatorcontrib>Glumac, Nick</creatorcontrib><title>Micro-alumina particle volatilization temperature measurements in a heterogeneous shock tube</title><title>Combustion and flame</title><description>Peak flame temperatures in aluminum particle combustion should approach the volatilization temperature of the product alumina. References are divided in assigning this temperature anywhere between 3200 and 4000
K, which can provide significant uncertainty not only in numerical models for combustion but also in the interpretation of flame structure from temperature measurements. We present results in the controlled conditions of the UIUC heterogeneous shock tube of volatilization temperature, made by measuring the extinction of light by nano- and micro-alumina particles at non-resonant wavelengths at different ambient temperatures. At 10
atm, there is a sharp cutoff at 3860
K beyond which nano-particles volatilize and stop extinguishing within the shock tube test time. Numerical modeling of the evaporation rate of these particles is used to assign a volatilization temperature of 4340
K at 10
atm. Similarly, a volatilization temperature of 4260
K at 3
atm is measured. From our analysis, the best estimate for the volatilization temperature at 1
atm was 4189
±
200
K, which is consistent with the high range of volatilization temperature reported in the literature.</description><subject>AlO</subject><subject>Aluminum</subject><subject>Aluminum combustion</subject><subject>Aluminum monoxide</subject><subject>Applied sciences</subject><subject>Cloud extinction</subject><subject>Combustion</subject><subject>Combustion. Flame</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Mathematical models</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Shock tubes</subject><subject>Temperature fitting</subject><subject>Temperature measurement</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkE9v1DAQxS1EJZaW72AhIXFJmLHX-cMNFVqQWvXS3pAsx5lQL0682E6l8unrslXVI5d5lzdv5v0Ye49QI2DzaVfbMA9rypM3M9UCEGtoaxDyFdugUk0leoGv2QYAoRLYwRv2NqUdALRbKTfs56WzMVTGr7NbDN-bmJ31xO-CN9l597fMsPBM856iyWskPpNJRWdacuJu4YbfUqYYftFCYU083Qb7m-d1oBN2NBmf6N2THrObs2_Xp9-ri6vzH6dfLioruzZXCqRQQD1OVgzC9hMN1EMHBsQ4gOo6NBKo21Jrx2FU0NiutOkVUi9k36E8Zh8PufsY_qyUsp5dsuS9-feRxqZF2ZS-22L9fLCW1ilFmvQ-utnEe42gH5HqnX6JVD8i1dDqgrQsf3i6Y5I1fopmsS49JwilAPsGiu_rwUel9J2jqJN1tFgaXSSb9Rjc_5x7AJHJlQw</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Lynch, Patrick</creator><creator>Krier, Herman</creator><creator>Glumac, Nick</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120201</creationdate><title>Micro-alumina particle volatilization temperature measurements in a heterogeneous shock tube</title><author>Lynch, Patrick ; Krier, Herman ; Glumac, Nick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-503250e91fc2b2c9febe9080a02db05881a30e84e7cdbd506c8010951e9239813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>AlO</topic><topic>Aluminum</topic><topic>Aluminum combustion</topic><topic>Aluminum monoxide</topic><topic>Applied sciences</topic><topic>Cloud extinction</topic><topic>Combustion</topic><topic>Combustion. Flame</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Mathematical models</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Shock tubes</topic><topic>Temperature fitting</topic><topic>Temperature measurement</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lynch, Patrick</creatorcontrib><creatorcontrib>Krier, Herman</creatorcontrib><creatorcontrib>Glumac, Nick</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lynch, Patrick</au><au>Krier, Herman</au><au>Glumac, Nick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micro-alumina particle volatilization temperature measurements in a heterogeneous shock tube</atitle><jtitle>Combustion and flame</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>159</volume><issue>2</issue><spage>793</spage><epage>801</epage><pages>793-801</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><coden>CBFMAO</coden><abstract>Peak flame temperatures in aluminum particle combustion should approach the volatilization temperature of the product alumina. References are divided in assigning this temperature anywhere between 3200 and 4000
K, which can provide significant uncertainty not only in numerical models for combustion but also in the interpretation of flame structure from temperature measurements. We present results in the controlled conditions of the UIUC heterogeneous shock tube of volatilization temperature, made by measuring the extinction of light by nano- and micro-alumina particles at non-resonant wavelengths at different ambient temperatures. At 10
atm, there is a sharp cutoff at 3860
K beyond which nano-particles volatilize and stop extinguishing within the shock tube test time. Numerical modeling of the evaporation rate of these particles is used to assign a volatilization temperature of 4340
K at 10
atm. Similarly, a volatilization temperature of 4260
K at 3
atm is measured. From our analysis, the best estimate for the volatilization temperature at 1
atm was 4189
±
200
K, which is consistent with the high range of volatilization temperature reported in the literature.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2011.07.023</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-2180 |
ispartof | Combustion and flame, 2012-02, Vol.159 (2), p.793-801 |
issn | 0010-2180 1556-2921 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671364334 |
source | Elsevier ScienceDirect Journals |
subjects | AlO Aluminum Aluminum combustion Aluminum monoxide Applied sciences Cloud extinction Combustion Combustion. Flame Energy Energy. Thermal use of fuels Exact sciences and technology Mathematical models Nanocomposites Nanomaterials Nanostructure Shock tubes Temperature fitting Temperature measurement Theoretical studies. Data and constants. Metering |
title | Micro-alumina particle volatilization temperature measurements in a heterogeneous shock tube |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micro-alumina%20particle%20volatilization%20temperature%20measurements%20in%20a%20heterogeneous%20shock%20tube&rft.jtitle=Combustion%20and%20flame&rft.au=Lynch,%20Patrick&rft.date=2012-02-01&rft.volume=159&rft.issue=2&rft.spage=793&rft.epage=801&rft.pages=793-801&rft.issn=0010-2180&rft.eissn=1556-2921&rft.coden=CBFMAO&rft_id=info:doi/10.1016/j.combustflame.2011.07.023&rft_dat=%3Cproquest_cross%3E1671364334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671364334&rft_id=info:pmid/&rft_els_id=S0010218011002550&rfr_iscdi=true |