Asymptotic stabilization of a class of bilinear systems by a variable structure feedback

We consider the problem of stabilization of a homogeneous bilinear system at zero. We assume that the system can be reduced to a form that admits feedback linearization at all points of the phase space outside a set N of measure zero. For such systems, we construct a variable structure feedback solv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2011-11, Vol.47 (11), p.1582-1591
1. Verfasser: Goncharov, O. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1591
container_issue 11
container_start_page 1582
container_title Differential equations
container_volume 47
creator Goncharov, O. I.
description We consider the problem of stabilization of a homogeneous bilinear system at zero. We assume that the system can be reduced to a form that admits feedback linearization at all points of the phase space outside a set N of measure zero. For such systems, we construct a variable structure feedback solving the stabilization problem under the condition that N is not an invariant set of the closed system.
doi_str_mv 10.1134/S001226611111005X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671362565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579703011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-862e4062977691a2acdae3750770cd753754b4c803846989c9b5ee7aaa8a49423</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7-Ad6KJy_VSdIkzXFZ_IIFDyrsrUyzqXTtx5qkQv3rTVlBUJzLDLzfewyPkHMKV5Ty7PoJgDImJZ0GQKwPyIxKyFMOOT8ks0lOJ_2YnHi_BQCtqJiR9cKP7S70oTaJD1jWTf2Joe67pK8STEyD3k_nJHQWXeJHH2zrk3KM8ge6GsvGRqsbTBicTSprNyWat1NyVGHj7dn3npOX25vn5X26erx7WC5WqeEAIc0lsxlIppWSmiJDs0HLlQClwGyUiGdWZiYHnmdS59roUlirEDHHTGeMz8nlPnfn-vfB-lC0tTe2abCz_eALKhXlkgkpInrxC932g-vid4VmAEqIiM4J3UPG9d47WxU7V7foxoJCMVVd_Kk6etje4yPbvVr3E_y_6QsjLX8R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920075571</pqid></control><display><type>article</type><title>Asymptotic stabilization of a class of bilinear systems by a variable structure feedback</title><source>SpringerLink Journals</source><creator>Goncharov, O. I.</creator><creatorcontrib>Goncharov, O. I.</creatorcontrib><description>We consider the problem of stabilization of a homogeneous bilinear system at zero. We assume that the system can be reduced to a form that admits feedback linearization at all points of the phase space outside a set N of measure zero. For such systems, we construct a variable structure feedback solving the stabilization problem under the condition that N is not an invariant set of the closed system.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S001226611111005X</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Asymptotic properties ; Construction ; Control Theory ; Difference and Functional Equations ; Differential equations ; Eigenvalues ; Feedback ; Feedback linearization ; Invariants ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Stabilization ; Variable structure</subject><ispartof>Differential equations, 2011-11, Vol.47 (11), p.1582-1591</ispartof><rights>Pleiades Publishing, Ltd. 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c300t-862e4062977691a2acdae3750770cd753754b4c803846989c9b5ee7aaa8a49423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S001226611111005X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S001226611111005X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Goncharov, O. I.</creatorcontrib><title>Asymptotic stabilization of a class of bilinear systems by a variable structure feedback</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>We consider the problem of stabilization of a homogeneous bilinear system at zero. We assume that the system can be reduced to a form that admits feedback linearization at all points of the phase space outside a set N of measure zero. For such systems, we construct a variable structure feedback solving the stabilization problem under the condition that N is not an invariant set of the closed system.</description><subject>Asymptotic properties</subject><subject>Construction</subject><subject>Control Theory</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Eigenvalues</subject><subject>Feedback</subject><subject>Feedback linearization</subject><subject>Invariants</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Stabilization</subject><subject>Variable structure</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1LxDAQxYMouK7-Ad6KJy_VSdIkzXFZ_IIFDyrsrUyzqXTtx5qkQv3rTVlBUJzLDLzfewyPkHMKV5Ty7PoJgDImJZ0GQKwPyIxKyFMOOT8ks0lOJ_2YnHi_BQCtqJiR9cKP7S70oTaJD1jWTf2Joe67pK8STEyD3k_nJHQWXeJHH2zrk3KM8ge6GsvGRqsbTBicTSprNyWat1NyVGHj7dn3npOX25vn5X26erx7WC5WqeEAIc0lsxlIppWSmiJDs0HLlQClwGyUiGdWZiYHnmdS59roUlirEDHHTGeMz8nlPnfn-vfB-lC0tTe2abCz_eALKhXlkgkpInrxC932g-vid4VmAEqIiM4J3UPG9d47WxU7V7foxoJCMVVd_Kk6etje4yPbvVr3E_y_6QsjLX8R</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Goncharov, O. I.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04W</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20111101</creationdate><title>Asymptotic stabilization of a class of bilinear systems by a variable structure feedback</title><author>Goncharov, O. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-862e4062977691a2acdae3750770cd753754b4c803846989c9b5ee7aaa8a49423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Asymptotic properties</topic><topic>Construction</topic><topic>Control Theory</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Eigenvalues</topic><topic>Feedback</topic><topic>Feedback linearization</topic><topic>Invariants</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Stabilization</topic><topic>Variable structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goncharov, O. I.</creatorcontrib><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: Science &amp; Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goncharov, O. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic stabilization of a class of bilinear systems by a variable structure feedback</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2011-11-01</date><risdate>2011</risdate><volume>47</volume><issue>11</issue><spage>1582</spage><epage>1591</epage><pages>1582-1591</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We consider the problem of stabilization of a homogeneous bilinear system at zero. We assume that the system can be reduced to a form that admits feedback linearization at all points of the phase space outside a set N of measure zero. For such systems, we construct a variable structure feedback solving the stabilization problem under the condition that N is not an invariant set of the closed system.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S001226611111005X</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-2661
ispartof Differential equations, 2011-11, Vol.47 (11), p.1582-1591
issn 0012-2661
1608-3083
language eng
recordid cdi_proquest_miscellaneous_1671362565
source SpringerLink Journals
subjects Asymptotic properties
Construction
Control Theory
Difference and Functional Equations
Differential equations
Eigenvalues
Feedback
Feedback linearization
Invariants
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
Stabilization
Variable structure
title Asymptotic stabilization of a class of bilinear systems by a variable structure feedback
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A39%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20stabilization%20of%20a%20class%20of%20bilinear%20systems%20by%20a%20variable%20structure%20feedback&rft.jtitle=Differential%20equations&rft.au=Goncharov,%20O.%20I.&rft.date=2011-11-01&rft.volume=47&rft.issue=11&rft.spage=1582&rft.epage=1591&rft.pages=1582-1591&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S001226611111005X&rft_dat=%3Cproquest_cross%3E2579703011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920075571&rft_id=info:pmid/&rfr_iscdi=true