Asymptotic stabilization of a class of bilinear systems by a variable structure feedback
We consider the problem of stabilization of a homogeneous bilinear system at zero. We assume that the system can be reduced to a form that admits feedback linearization at all points of the phase space outside a set N of measure zero. For such systems, we construct a variable structure feedback solv...
Gespeichert in:
Veröffentlicht in: | Differential equations 2011-11, Vol.47 (11), p.1582-1591 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1591 |
---|---|
container_issue | 11 |
container_start_page | 1582 |
container_title | Differential equations |
container_volume | 47 |
creator | Goncharov, O. I. |
description | We consider the problem of stabilization of a homogeneous bilinear system at zero. We assume that the system can be reduced to a form that admits feedback linearization at all points of the phase space outside a set
N
of measure zero. For such systems, we construct a variable structure feedback solving the stabilization problem under the condition that
N
is not an invariant set of the closed system. |
doi_str_mv | 10.1134/S001226611111005X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671362565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579703011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-862e4062977691a2acdae3750770cd753754b4c803846989c9b5ee7aaa8a49423</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7-Ad6KJy_VSdIkzXFZ_IIFDyrsrUyzqXTtx5qkQv3rTVlBUJzLDLzfewyPkHMKV5Ty7PoJgDImJZ0GQKwPyIxKyFMOOT8ks0lOJ_2YnHi_BQCtqJiR9cKP7S70oTaJD1jWTf2Joe67pK8STEyD3k_nJHQWXeJHH2zrk3KM8ge6GsvGRqsbTBicTSprNyWat1NyVGHj7dn3npOX25vn5X26erx7WC5WqeEAIc0lsxlIppWSmiJDs0HLlQClwGyUiGdWZiYHnmdS59roUlirEDHHTGeMz8nlPnfn-vfB-lC0tTe2abCz_eALKhXlkgkpInrxC932g-vid4VmAEqIiM4J3UPG9d47WxU7V7foxoJCMVVd_Kk6etje4yPbvVr3E_y_6QsjLX8R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920075571</pqid></control><display><type>article</type><title>Asymptotic stabilization of a class of bilinear systems by a variable structure feedback</title><source>SpringerLink Journals</source><creator>Goncharov, O. I.</creator><creatorcontrib>Goncharov, O. I.</creatorcontrib><description>We consider the problem of stabilization of a homogeneous bilinear system at zero. We assume that the system can be reduced to a form that admits feedback linearization at all points of the phase space outside a set
N
of measure zero. For such systems, we construct a variable structure feedback solving the stabilization problem under the condition that
N
is not an invariant set of the closed system.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S001226611111005X</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Asymptotic properties ; Construction ; Control Theory ; Difference and Functional Equations ; Differential equations ; Eigenvalues ; Feedback ; Feedback linearization ; Invariants ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Stabilization ; Variable structure</subject><ispartof>Differential equations, 2011-11, Vol.47 (11), p.1582-1591</ispartof><rights>Pleiades Publishing, Ltd. 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c300t-862e4062977691a2acdae3750770cd753754b4c803846989c9b5ee7aaa8a49423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S001226611111005X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S001226611111005X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Goncharov, O. I.</creatorcontrib><title>Asymptotic stabilization of a class of bilinear systems by a variable structure feedback</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>We consider the problem of stabilization of a homogeneous bilinear system at zero. We assume that the system can be reduced to a form that admits feedback linearization at all points of the phase space outside a set
N
of measure zero. For such systems, we construct a variable structure feedback solving the stabilization problem under the condition that
N
is not an invariant set of the closed system.</description><subject>Asymptotic properties</subject><subject>Construction</subject><subject>Control Theory</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Eigenvalues</subject><subject>Feedback</subject><subject>Feedback linearization</subject><subject>Invariants</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Stabilization</subject><subject>Variable structure</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1LxDAQxYMouK7-Ad6KJy_VSdIkzXFZ_IIFDyrsrUyzqXTtx5qkQv3rTVlBUJzLDLzfewyPkHMKV5Ty7PoJgDImJZ0GQKwPyIxKyFMOOT8ks0lOJ_2YnHi_BQCtqJiR9cKP7S70oTaJD1jWTf2Joe67pK8STEyD3k_nJHQWXeJHH2zrk3KM8ge6GsvGRqsbTBicTSprNyWat1NyVGHj7dn3npOX25vn5X26erx7WC5WqeEAIc0lsxlIppWSmiJDs0HLlQClwGyUiGdWZiYHnmdS59roUlirEDHHTGeMz8nlPnfn-vfB-lC0tTe2abCz_eALKhXlkgkpInrxC932g-vid4VmAEqIiM4J3UPG9d47WxU7V7foxoJCMVVd_Kk6etje4yPbvVr3E_y_6QsjLX8R</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Goncharov, O. I.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04W</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20111101</creationdate><title>Asymptotic stabilization of a class of bilinear systems by a variable structure feedback</title><author>Goncharov, O. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-862e4062977691a2acdae3750770cd753754b4c803846989c9b5ee7aaa8a49423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Asymptotic properties</topic><topic>Construction</topic><topic>Control Theory</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Eigenvalues</topic><topic>Feedback</topic><topic>Feedback linearization</topic><topic>Invariants</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Stabilization</topic><topic>Variable structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goncharov, O. I.</creatorcontrib><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: Science & Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goncharov, O. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic stabilization of a class of bilinear systems by a variable structure feedback</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2011-11-01</date><risdate>2011</risdate><volume>47</volume><issue>11</issue><spage>1582</spage><epage>1591</epage><pages>1582-1591</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We consider the problem of stabilization of a homogeneous bilinear system at zero. We assume that the system can be reduced to a form that admits feedback linearization at all points of the phase space outside a set
N
of measure zero. For such systems, we construct a variable structure feedback solving the stabilization problem under the condition that
N
is not an invariant set of the closed system.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S001226611111005X</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-2661 |
ispartof | Differential equations, 2011-11, Vol.47 (11), p.1582-1591 |
issn | 0012-2661 1608-3083 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671362565 |
source | SpringerLink Journals |
subjects | Asymptotic properties Construction Control Theory Difference and Functional Equations Differential equations Eigenvalues Feedback Feedback linearization Invariants Mathematics Mathematics and Statistics Ordinary Differential Equations Partial Differential Equations Stabilization Variable structure |
title | Asymptotic stabilization of a class of bilinear systems by a variable structure feedback |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A39%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20stabilization%20of%20a%20class%20of%20bilinear%20systems%20by%20a%20variable%20structure%20feedback&rft.jtitle=Differential%20equations&rft.au=Goncharov,%20O.%20I.&rft.date=2011-11-01&rft.volume=47&rft.issue=11&rft.spage=1582&rft.epage=1591&rft.pages=1582-1591&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S001226611111005X&rft_dat=%3Cproquest_cross%3E2579703011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920075571&rft_id=info:pmid/&rfr_iscdi=true |