A robust model predictive control algorithm for incrementally conic uncertain/nonlinear systems
This paper presents a robustly stabilizing model predictive control algorithm for systems with incrementally conic uncertain/nonlinear terms and bounded disturbances. The resulting control input consists of feedforward and feedback components. The feedforward control generates a nominal trajectory f...
Gespeichert in:
Veröffentlicht in: | International journal of robust and nonlinear control 2011-03, Vol.21 (5), p.563-590 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 590 |
---|---|
container_issue | 5 |
container_start_page | 563 |
container_title | International journal of robust and nonlinear control |
container_volume | 21 |
creator | Açıkmeşe, Behçet Carson III, John M. Bayard, David S. |
description | This paper presents a robustly stabilizing model predictive control algorithm for systems with incrementally conic uncertain/nonlinear terms and bounded disturbances. The resulting control input consists of feedforward and feedback components. The feedforward control generates a nominal trajectory from online solution of a finite‐horizon constrained optimal control problem for a nominal system model. The feedback control policy is designed off‐line by utilizing a model of the uncertainty/nonlinearity and establishes invariant ‘state tubes’ around the nominal system trajectories. The entire controller is shown to be robustly stabilizing with a region of attraction composed of the initial states for which the finite‐horizon constrained optimal control problem is feasible for the nominal system. Synthesis of the feedback control policy involves solution of linear matrix inequalities. An illustrative numerical example is provided to demonstrate the control design and the resulting closed‐loop system performance. Copyright © 2010 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/rnc.1613 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671360160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671360160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3363-c4d2ddd5a167441231cc444f2f96c40853332bb383089adae8b7501ea9917a253</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtYq-BNy9LJtssl-5FgXrUKpIBWPIZvNajSb1CRV99-7S0Xx4GkG5mGYeQE4x2iGEUrn3soZzjE5ABOMGEtwStjh2FOWlCwlx-AkhBeEhllKJ4AvoHf1LkTYuUYZuPWq0TLqdwWls9E7A4V5cl7H5w62zkNtpVedslEY049GS7izUvkotJ1bZ422SngY-hBVF07BUStMUGffdQoerq821U2yulveVotVIgnJSSJpkzZNkwmcF5QON2MpKaVt2rJcUlRmhJC0rklJUMlEI1RZFxnCSjCGC5FmZAou9nu33r3tVIi800EqY4RVbhf4sBeTHOEc_VLpXQhetXzrdSd8zzHiY4Z8yJCPGQ402dMPbVT_r-P36-qv18Pznz9e-FeeF6TI-ON6ya-L4nK1riq-IV_w8oLO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671360160</pqid></control><display><type>article</type><title>A robust model predictive control algorithm for incrementally conic uncertain/nonlinear systems</title><source>Access via Wiley Online Library</source><creator>Açıkmeşe, Behçet ; Carson III, John M. ; Bayard, David S.</creator><creatorcontrib>Açıkmeşe, Behçet ; Carson III, John M. ; Bayard, David S.</creatorcontrib><description>This paper presents a robustly stabilizing model predictive control algorithm for systems with incrementally conic uncertain/nonlinear terms and bounded disturbances. The resulting control input consists of feedforward and feedback components. The feedforward control generates a nominal trajectory from online solution of a finite‐horizon constrained optimal control problem for a nominal system model. The feedback control policy is designed off‐line by utilizing a model of the uncertainty/nonlinearity and establishes invariant ‘state tubes’ around the nominal system trajectories. The entire controller is shown to be robustly stabilizing with a region of attraction composed of the initial states for which the finite‐horizon constrained optimal control problem is feasible for the nominal system. Synthesis of the feedback control policy involves solution of linear matrix inequalities. An illustrative numerical example is provided to demonstrate the control design and the resulting closed‐loop system performance. Copyright © 2010 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1049-8923</identifier><identifier>ISSN: 1099-1239</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.1613</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Algorithms ; Control systems ; Feedback control ; incrementally conic uncertainty ; linear matrix inequalities ; Lyapunov theory ; Mathematical models ; model predictive control ; nonlinear systems ; Nonlinearity ; Policies ; Predictive control ; receding horizon control ; robust control ; Trajectories ; uncertain systems</subject><ispartof>International journal of robust and nonlinear control, 2011-03, Vol.21 (5), p.563-590</ispartof><rights>Copyright © 2010 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3363-c4d2ddd5a167441231cc444f2f96c40853332bb383089adae8b7501ea9917a253</citedby><cites>FETCH-LOGICAL-c3363-c4d2ddd5a167441231cc444f2f96c40853332bb383089adae8b7501ea9917a253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.1613$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.1613$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Açıkmeşe, Behçet</creatorcontrib><creatorcontrib>Carson III, John M.</creatorcontrib><creatorcontrib>Bayard, David S.</creatorcontrib><title>A robust model predictive control algorithm for incrementally conic uncertain/nonlinear systems</title><title>International journal of robust and nonlinear control</title><addtitle>Int. J. Robust Nonlinear Control</addtitle><description>This paper presents a robustly stabilizing model predictive control algorithm for systems with incrementally conic uncertain/nonlinear terms and bounded disturbances. The resulting control input consists of feedforward and feedback components. The feedforward control generates a nominal trajectory from online solution of a finite‐horizon constrained optimal control problem for a nominal system model. The feedback control policy is designed off‐line by utilizing a model of the uncertainty/nonlinearity and establishes invariant ‘state tubes’ around the nominal system trajectories. The entire controller is shown to be robustly stabilizing with a region of attraction composed of the initial states for which the finite‐horizon constrained optimal control problem is feasible for the nominal system. Synthesis of the feedback control policy involves solution of linear matrix inequalities. An illustrative numerical example is provided to demonstrate the control design and the resulting closed‐loop system performance. Copyright © 2010 John Wiley & Sons, Ltd.</description><subject>Algorithms</subject><subject>Control systems</subject><subject>Feedback control</subject><subject>incrementally conic uncertainty</subject><subject>linear matrix inequalities</subject><subject>Lyapunov theory</subject><subject>Mathematical models</subject><subject>model predictive control</subject><subject>nonlinear systems</subject><subject>Nonlinearity</subject><subject>Policies</subject><subject>Predictive control</subject><subject>receding horizon control</subject><subject>robust control</subject><subject>Trajectories</subject><subject>uncertain systems</subject><issn>1049-8923</issn><issn>1099-1239</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAgCtYq-BNy9LJtssl-5FgXrUKpIBWPIZvNajSb1CRV99-7S0Xx4GkG5mGYeQE4x2iGEUrn3soZzjE5ABOMGEtwStjh2FOWlCwlx-AkhBeEhllKJ4AvoHf1LkTYuUYZuPWq0TLqdwWls9E7A4V5cl7H5w62zkNtpVedslEY049GS7izUvkotJ1bZ422SngY-hBVF07BUStMUGffdQoerq821U2yulveVotVIgnJSSJpkzZNkwmcF5QON2MpKaVt2rJcUlRmhJC0rklJUMlEI1RZFxnCSjCGC5FmZAou9nu33r3tVIi800EqY4RVbhf4sBeTHOEc_VLpXQhetXzrdSd8zzHiY4Z8yJCPGQ402dMPbVT_r-P36-qv18Pznz9e-FeeF6TI-ON6ya-L4nK1riq-IV_w8oLO</recordid><startdate>20110325</startdate><enddate>20110325</enddate><creator>Açıkmeşe, Behçet</creator><creator>Carson III, John M.</creator><creator>Bayard, David S.</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110325</creationdate><title>A robust model predictive control algorithm for incrementally conic uncertain/nonlinear systems</title><author>Açıkmeşe, Behçet ; Carson III, John M. ; Bayard, David S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3363-c4d2ddd5a167441231cc444f2f96c40853332bb383089adae8b7501ea9917a253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Control systems</topic><topic>Feedback control</topic><topic>incrementally conic uncertainty</topic><topic>linear matrix inequalities</topic><topic>Lyapunov theory</topic><topic>Mathematical models</topic><topic>model predictive control</topic><topic>nonlinear systems</topic><topic>Nonlinearity</topic><topic>Policies</topic><topic>Predictive control</topic><topic>receding horizon control</topic><topic>robust control</topic><topic>Trajectories</topic><topic>uncertain systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Açıkmeşe, Behçet</creatorcontrib><creatorcontrib>Carson III, John M.</creatorcontrib><creatorcontrib>Bayard, David S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Açıkmeşe, Behçet</au><au>Carson III, John M.</au><au>Bayard, David S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust model predictive control algorithm for incrementally conic uncertain/nonlinear systems</atitle><jtitle>International journal of robust and nonlinear control</jtitle><addtitle>Int. J. Robust Nonlinear Control</addtitle><date>2011-03-25</date><risdate>2011</risdate><volume>21</volume><issue>5</issue><spage>563</spage><epage>590</epage><pages>563-590</pages><issn>1049-8923</issn><issn>1099-1239</issn><eissn>1099-1239</eissn><abstract>This paper presents a robustly stabilizing model predictive control algorithm for systems with incrementally conic uncertain/nonlinear terms and bounded disturbances. The resulting control input consists of feedforward and feedback components. The feedforward control generates a nominal trajectory from online solution of a finite‐horizon constrained optimal control problem for a nominal system model. The feedback control policy is designed off‐line by utilizing a model of the uncertainty/nonlinearity and establishes invariant ‘state tubes’ around the nominal system trajectories. The entire controller is shown to be robustly stabilizing with a region of attraction composed of the initial states for which the finite‐horizon constrained optimal control problem is feasible for the nominal system. Synthesis of the feedback control policy involves solution of linear matrix inequalities. An illustrative numerical example is provided to demonstrate the control design and the resulting closed‐loop system performance. Copyright © 2010 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/rnc.1613</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2011-03, Vol.21 (5), p.563-590 |
issn | 1049-8923 1099-1239 1099-1239 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671360160 |
source | Access via Wiley Online Library |
subjects | Algorithms Control systems Feedback control incrementally conic uncertainty linear matrix inequalities Lyapunov theory Mathematical models model predictive control nonlinear systems Nonlinearity Policies Predictive control receding horizon control robust control Trajectories uncertain systems |
title | A robust model predictive control algorithm for incrementally conic uncertain/nonlinear systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A22%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust%20model%20predictive%20control%20algorithm%20for%20incrementally%20conic%20uncertain/nonlinear%20systems&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=A%C3%A7%C4%B1kme%C5%9Fe,%20Beh%C3%A7et&rft.date=2011-03-25&rft.volume=21&rft.issue=5&rft.spage=563&rft.epage=590&rft.pages=563-590&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.1613&rft_dat=%3Cproquest_cross%3E1671360160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671360160&rft_id=info:pmid/&rfr_iscdi=true |