A robust model predictive control algorithm for incrementally conic uncertain/nonlinear systems

This paper presents a robustly stabilizing model predictive control algorithm for systems with incrementally conic uncertain/nonlinear terms and bounded disturbances. The resulting control input consists of feedforward and feedback components. The feedforward control generates a nominal trajectory f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2011-03, Vol.21 (5), p.563-590
Hauptverfasser: Açıkmeşe, Behçet, Carson III, John M., Bayard, David S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 590
container_issue 5
container_start_page 563
container_title International journal of robust and nonlinear control
container_volume 21
creator Açıkmeşe, Behçet
Carson III, John M.
Bayard, David S.
description This paper presents a robustly stabilizing model predictive control algorithm for systems with incrementally conic uncertain/nonlinear terms and bounded disturbances. The resulting control input consists of feedforward and feedback components. The feedforward control generates a nominal trajectory from online solution of a finite‐horizon constrained optimal control problem for a nominal system model. The feedback control policy is designed off‐line by utilizing a model of the uncertainty/nonlinearity and establishes invariant ‘state tubes’ around the nominal system trajectories. The entire controller is shown to be robustly stabilizing with a region of attraction composed of the initial states for which the finite‐horizon constrained optimal control problem is feasible for the nominal system. Synthesis of the feedback control policy involves solution of linear matrix inequalities. An illustrative numerical example is provided to demonstrate the control design and the resulting closed‐loop system performance. Copyright © 2010 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/rnc.1613
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671360160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671360160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3363-c4d2ddd5a167441231cc444f2f96c40853332bb383089adae8b7501ea9917a253</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtYq-BNy9LJtssl-5FgXrUKpIBWPIZvNajSb1CRV99-7S0Xx4GkG5mGYeQE4x2iGEUrn3soZzjE5ABOMGEtwStjh2FOWlCwlx-AkhBeEhllKJ4AvoHf1LkTYuUYZuPWq0TLqdwWls9E7A4V5cl7H5w62zkNtpVedslEY049GS7izUvkotJ1bZ422SngY-hBVF07BUStMUGffdQoerq821U2yulveVotVIgnJSSJpkzZNkwmcF5QON2MpKaVt2rJcUlRmhJC0rklJUMlEI1RZFxnCSjCGC5FmZAou9nu33r3tVIi800EqY4RVbhf4sBeTHOEc_VLpXQhetXzrdSd8zzHiY4Z8yJCPGQ402dMPbVT_r-P36-qv18Pznz9e-FeeF6TI-ON6ya-L4nK1riq-IV_w8oLO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671360160</pqid></control><display><type>article</type><title>A robust model predictive control algorithm for incrementally conic uncertain/nonlinear systems</title><source>Access via Wiley Online Library</source><creator>Açıkmeşe, Behçet ; Carson III, John M. ; Bayard, David S.</creator><creatorcontrib>Açıkmeşe, Behçet ; Carson III, John M. ; Bayard, David S.</creatorcontrib><description>This paper presents a robustly stabilizing model predictive control algorithm for systems with incrementally conic uncertain/nonlinear terms and bounded disturbances. The resulting control input consists of feedforward and feedback components. The feedforward control generates a nominal trajectory from online solution of a finite‐horizon constrained optimal control problem for a nominal system model. The feedback control policy is designed off‐line by utilizing a model of the uncertainty/nonlinearity and establishes invariant ‘state tubes’ around the nominal system trajectories. The entire controller is shown to be robustly stabilizing with a region of attraction composed of the initial states for which the finite‐horizon constrained optimal control problem is feasible for the nominal system. Synthesis of the feedback control policy involves solution of linear matrix inequalities. An illustrative numerical example is provided to demonstrate the control design and the resulting closed‐loop system performance. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1049-8923</identifier><identifier>ISSN: 1099-1239</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.1613</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Algorithms ; Control systems ; Feedback control ; incrementally conic uncertainty ; linear matrix inequalities ; Lyapunov theory ; Mathematical models ; model predictive control ; nonlinear systems ; Nonlinearity ; Policies ; Predictive control ; receding horizon control ; robust control ; Trajectories ; uncertain systems</subject><ispartof>International journal of robust and nonlinear control, 2011-03, Vol.21 (5), p.563-590</ispartof><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3363-c4d2ddd5a167441231cc444f2f96c40853332bb383089adae8b7501ea9917a253</citedby><cites>FETCH-LOGICAL-c3363-c4d2ddd5a167441231cc444f2f96c40853332bb383089adae8b7501ea9917a253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.1613$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.1613$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Açıkmeşe, Behçet</creatorcontrib><creatorcontrib>Carson III, John M.</creatorcontrib><creatorcontrib>Bayard, David S.</creatorcontrib><title>A robust model predictive control algorithm for incrementally conic uncertain/nonlinear systems</title><title>International journal of robust and nonlinear control</title><addtitle>Int. J. Robust Nonlinear Control</addtitle><description>This paper presents a robustly stabilizing model predictive control algorithm for systems with incrementally conic uncertain/nonlinear terms and bounded disturbances. The resulting control input consists of feedforward and feedback components. The feedforward control generates a nominal trajectory from online solution of a finite‐horizon constrained optimal control problem for a nominal system model. The feedback control policy is designed off‐line by utilizing a model of the uncertainty/nonlinearity and establishes invariant ‘state tubes’ around the nominal system trajectories. The entire controller is shown to be robustly stabilizing with a region of attraction composed of the initial states for which the finite‐horizon constrained optimal control problem is feasible for the nominal system. Synthesis of the feedback control policy involves solution of linear matrix inequalities. An illustrative numerical example is provided to demonstrate the control design and the resulting closed‐loop system performance. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><subject>Algorithms</subject><subject>Control systems</subject><subject>Feedback control</subject><subject>incrementally conic uncertainty</subject><subject>linear matrix inequalities</subject><subject>Lyapunov theory</subject><subject>Mathematical models</subject><subject>model predictive control</subject><subject>nonlinear systems</subject><subject>Nonlinearity</subject><subject>Policies</subject><subject>Predictive control</subject><subject>receding horizon control</subject><subject>robust control</subject><subject>Trajectories</subject><subject>uncertain systems</subject><issn>1049-8923</issn><issn>1099-1239</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAgCtYq-BNy9LJtssl-5FgXrUKpIBWPIZvNajSb1CRV99-7S0Xx4GkG5mGYeQE4x2iGEUrn3soZzjE5ABOMGEtwStjh2FOWlCwlx-AkhBeEhllKJ4AvoHf1LkTYuUYZuPWq0TLqdwWls9E7A4V5cl7H5w62zkNtpVedslEY049GS7izUvkotJ1bZ422SngY-hBVF07BUStMUGffdQoerq821U2yulveVotVIgnJSSJpkzZNkwmcF5QON2MpKaVt2rJcUlRmhJC0rklJUMlEI1RZFxnCSjCGC5FmZAou9nu33r3tVIi800EqY4RVbhf4sBeTHOEc_VLpXQhetXzrdSd8zzHiY4Z8yJCPGQ402dMPbVT_r-P36-qv18Pznz9e-FeeF6TI-ON6ya-L4nK1riq-IV_w8oLO</recordid><startdate>20110325</startdate><enddate>20110325</enddate><creator>Açıkmeşe, Behçet</creator><creator>Carson III, John M.</creator><creator>Bayard, David S.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110325</creationdate><title>A robust model predictive control algorithm for incrementally conic uncertain/nonlinear systems</title><author>Açıkmeşe, Behçet ; Carson III, John M. ; Bayard, David S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3363-c4d2ddd5a167441231cc444f2f96c40853332bb383089adae8b7501ea9917a253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Control systems</topic><topic>Feedback control</topic><topic>incrementally conic uncertainty</topic><topic>linear matrix inequalities</topic><topic>Lyapunov theory</topic><topic>Mathematical models</topic><topic>model predictive control</topic><topic>nonlinear systems</topic><topic>Nonlinearity</topic><topic>Policies</topic><topic>Predictive control</topic><topic>receding horizon control</topic><topic>robust control</topic><topic>Trajectories</topic><topic>uncertain systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Açıkmeşe, Behçet</creatorcontrib><creatorcontrib>Carson III, John M.</creatorcontrib><creatorcontrib>Bayard, David S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Açıkmeşe, Behçet</au><au>Carson III, John M.</au><au>Bayard, David S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust model predictive control algorithm for incrementally conic uncertain/nonlinear systems</atitle><jtitle>International journal of robust and nonlinear control</jtitle><addtitle>Int. J. Robust Nonlinear Control</addtitle><date>2011-03-25</date><risdate>2011</risdate><volume>21</volume><issue>5</issue><spage>563</spage><epage>590</epage><pages>563-590</pages><issn>1049-8923</issn><issn>1099-1239</issn><eissn>1099-1239</eissn><abstract>This paper presents a robustly stabilizing model predictive control algorithm for systems with incrementally conic uncertain/nonlinear terms and bounded disturbances. The resulting control input consists of feedforward and feedback components. The feedforward control generates a nominal trajectory from online solution of a finite‐horizon constrained optimal control problem for a nominal system model. The feedback control policy is designed off‐line by utilizing a model of the uncertainty/nonlinearity and establishes invariant ‘state tubes’ around the nominal system trajectories. The entire controller is shown to be robustly stabilizing with a region of attraction composed of the initial states for which the finite‐horizon constrained optimal control problem is feasible for the nominal system. Synthesis of the feedback control policy involves solution of linear matrix inequalities. An illustrative numerical example is provided to demonstrate the control design and the resulting closed‐loop system performance. Copyright © 2010 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/rnc.1613</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2011-03, Vol.21 (5), p.563-590
issn 1049-8923
1099-1239
1099-1239
language eng
recordid cdi_proquest_miscellaneous_1671360160
source Access via Wiley Online Library
subjects Algorithms
Control systems
Feedback control
incrementally conic uncertainty
linear matrix inequalities
Lyapunov theory
Mathematical models
model predictive control
nonlinear systems
Nonlinearity
Policies
Predictive control
receding horizon control
robust control
Trajectories
uncertain systems
title A robust model predictive control algorithm for incrementally conic uncertain/nonlinear systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A22%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust%20model%20predictive%20control%20algorithm%20for%20incrementally%20conic%20uncertain/nonlinear%20systems&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=A%C3%A7%C4%B1kme%C5%9Fe,%20Beh%C3%A7et&rft.date=2011-03-25&rft.volume=21&rft.issue=5&rft.spage=563&rft.epage=590&rft.pages=563-590&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.1613&rft_dat=%3Cproquest_cross%3E1671360160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671360160&rft_id=info:pmid/&rfr_iscdi=true