Hydromagnetic nanofluid flow due to a stretching or shrinking sheet with viscous dissipation and chemical reaction effects

We investigate the convective heat and mass transfer in nanofluid flow over a stretching sheet subject to hydromagnetic, viscous dissipation, chemical reaction and Soret effects. Two types of nanofluids, namely Cu–water and Ag–water were studied. A similarity transformation was used to obtain a syst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2012-12, Vol.55 (25-26), p.7587-7595
Hauptverfasser: Kameswaran, P.K., Narayana, M., Sibanda, P., Murthy, P.V.S.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7595
container_issue 25-26
container_start_page 7587
container_title International journal of heat and mass transfer
container_volume 55
creator Kameswaran, P.K.
Narayana, M.
Sibanda, P.
Murthy, P.V.S.N.
description We investigate the convective heat and mass transfer in nanofluid flow over a stretching sheet subject to hydromagnetic, viscous dissipation, chemical reaction and Soret effects. Two types of nanofluids, namely Cu–water and Ag–water were studied. A similarity transformation was used to obtain a system of non-linear ordinary differential equations, which was then solved numerically using the Matlab “bvp4c” function. Numerical results were obtained for the skin friction coefficient, Nusselt number, Sherwood number as well as for the velocity, temperature and concentration profiles for selected values of the governing parameters, such as the nanoparticle volume fraction ϕ, the magnetic parameter M. For a fixed Prandtl number Pr=6.2 (corresponding to water) and different values of the magnetic field parameter and the nanoparticle volume fraction, we have shown that a good agreement exists between the present results and those in the literature. It was shown that the Cu–water nanofluid exhibits higher wall heat and mass transfer rates as compared to a Ag–water nanofluid. The influence of a magnetic field is to reduce both wall heat and mass transfer rates.
doi_str_mv 10.1016/j.ijheatmasstransfer.2012.07.065
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671358501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931012006011</els_id><sourcerecordid>1171878705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-fe82649a4b556ef9556a2633af4d45d714d683e2606533b06282013c1766f5093</originalsourceid><addsrcrecordid>eNqNUcGOFCEUJEYTx9F_4GKyl26h6Ybum2ajrmYTL3omLDy2Gbth5DG7Wb9e2tl48aAXyCNFVb0qQi44aznj8s2hDYcZTFkNYskmoofcdox3LVMtk8MTsuOjmpqOj9NTsmOMq2YSnD0nLxAP28h6uSM_rx5cTqu5jVCCpdHE5JdTcNQv6Z66E9CSqKFVAoqdQ7ylKVOcc4jftwFngELvQ5npXUCbTkhdQAxHU0KK1ERH7QxrsGahGYz9_Qregy34kjzzZkF49XjvybcP779eXjXXXz5-unx33dhejKXxMHayn0x_MwwS_FRP00khjO9dPzjFeydHAZ2sSwtxw2Q31hiE5UpKP7BJ7MnFmfeY048TYNFrtQrLYiJUw5pLxcUwDvXTP6Fc1VBHxYYKfXuG2pwQM3h9zGE1-UFzpreG9EH_3ZDeGtJM6c3snrx-VDNYA_IVYwP-4albKyZGWXGfzzioKd2FyoI2QLTgQq5BapfC_4v-AgGNtJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1171878705</pqid></control><display><type>article</type><title>Hydromagnetic nanofluid flow due to a stretching or shrinking sheet with viscous dissipation and chemical reaction effects</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kameswaran, P.K. ; Narayana, M. ; Sibanda, P. ; Murthy, P.V.S.N.</creator><creatorcontrib>Kameswaran, P.K. ; Narayana, M. ; Sibanda, P. ; Murthy, P.V.S.N.</creatorcontrib><description>We investigate the convective heat and mass transfer in nanofluid flow over a stretching sheet subject to hydromagnetic, viscous dissipation, chemical reaction and Soret effects. Two types of nanofluids, namely Cu–water and Ag–water were studied. A similarity transformation was used to obtain a system of non-linear ordinary differential equations, which was then solved numerically using the Matlab “bvp4c” function. Numerical results were obtained for the skin friction coefficient, Nusselt number, Sherwood number as well as for the velocity, temperature and concentration profiles for selected values of the governing parameters, such as the nanoparticle volume fraction ϕ, the magnetic parameter M. For a fixed Prandtl number Pr=6.2 (corresponding to water) and different values of the magnetic field parameter and the nanoparticle volume fraction, we have shown that a good agreement exists between the present results and those in the literature. It was shown that the Cu–water nanofluid exhibits higher wall heat and mass transfer rates as compared to a Ag–water nanofluid. The influence of a magnetic field is to reduce both wall heat and mass transfer rates.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2012.07.065</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Chemical reaction ; Chemistry ; Colloidal state and disperse state ; Condensed matter: structure, mechanical and thermal properties ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; General and physical chemistry ; Heat and mass transfer ; Heat transfer ; Magnetohydrodynamics and electrohydrodynamics ; Mass transfer ; Mathematical models ; Matlab ; Nanocomposites ; Nanofluid flow ; Nanofluids ; Nanomaterials ; Nanostructure ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Physics ; Silver ; Soret effect ; Stretching sheet ; Theoretical studies. Data and constants. Metering ; Thermal properties of condensed matter ; Thermal properties of small particles, nanocrystals, nanotubes ; Viscous dissipation ; Walls</subject><ispartof>International journal of heat and mass transfer, 2012-12, Vol.55 (25-26), p.7587-7595</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-fe82649a4b556ef9556a2633af4d45d714d683e2606533b06282013c1766f5093</citedby><cites>FETCH-LOGICAL-c438t-fe82649a4b556ef9556a2633af4d45d714d683e2606533b06282013c1766f5093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.07.065$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26470386$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kameswaran, P.K.</creatorcontrib><creatorcontrib>Narayana, M.</creatorcontrib><creatorcontrib>Sibanda, P.</creatorcontrib><creatorcontrib>Murthy, P.V.S.N.</creatorcontrib><title>Hydromagnetic nanofluid flow due to a stretching or shrinking sheet with viscous dissipation and chemical reaction effects</title><title>International journal of heat and mass transfer</title><description>We investigate the convective heat and mass transfer in nanofluid flow over a stretching sheet subject to hydromagnetic, viscous dissipation, chemical reaction and Soret effects. Two types of nanofluids, namely Cu–water and Ag–water were studied. A similarity transformation was used to obtain a system of non-linear ordinary differential equations, which was then solved numerically using the Matlab “bvp4c” function. Numerical results were obtained for the skin friction coefficient, Nusselt number, Sherwood number as well as for the velocity, temperature and concentration profiles for selected values of the governing parameters, such as the nanoparticle volume fraction ϕ, the magnetic parameter M. For a fixed Prandtl number Pr=6.2 (corresponding to water) and different values of the magnetic field parameter and the nanoparticle volume fraction, we have shown that a good agreement exists between the present results and those in the literature. It was shown that the Cu–water nanofluid exhibits higher wall heat and mass transfer rates as compared to a Ag–water nanofluid. The influence of a magnetic field is to reduce both wall heat and mass transfer rates.</description><subject>Applied sciences</subject><subject>Chemical reaction</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General and physical chemistry</subject><subject>Heat and mass transfer</subject><subject>Heat transfer</subject><subject>Magnetohydrodynamics and electrohydrodynamics</subject><subject>Mass transfer</subject><subject>Mathematical models</subject><subject>Matlab</subject><subject>Nanocomposites</subject><subject>Nanofluid flow</subject><subject>Nanofluids</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Physics</subject><subject>Silver</subject><subject>Soret effect</subject><subject>Stretching sheet</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of small particles, nanocrystals, nanotubes</subject><subject>Viscous dissipation</subject><subject>Walls</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNUcGOFCEUJEYTx9F_4GKyl26h6Ybum2ajrmYTL3omLDy2Gbth5DG7Wb9e2tl48aAXyCNFVb0qQi44aznj8s2hDYcZTFkNYskmoofcdox3LVMtk8MTsuOjmpqOj9NTsmOMq2YSnD0nLxAP28h6uSM_rx5cTqu5jVCCpdHE5JdTcNQv6Z66E9CSqKFVAoqdQ7ylKVOcc4jftwFngELvQ5npXUCbTkhdQAxHU0KK1ERH7QxrsGahGYz9_Qregy34kjzzZkF49XjvybcP779eXjXXXz5-unx33dhejKXxMHayn0x_MwwS_FRP00khjO9dPzjFeydHAZ2sSwtxw2Q31hiE5UpKP7BJ7MnFmfeY048TYNFrtQrLYiJUw5pLxcUwDvXTP6Fc1VBHxYYKfXuG2pwQM3h9zGE1-UFzpreG9EH_3ZDeGtJM6c3snrx-VDNYA_IVYwP-4albKyZGWXGfzzioKd2FyoI2QLTgQq5BapfC_4v-AgGNtJQ</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Kameswaran, P.K.</creator><creator>Narayana, M.</creator><creator>Sibanda, P.</creator><creator>Murthy, P.V.S.N.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20121201</creationdate><title>Hydromagnetic nanofluid flow due to a stretching or shrinking sheet with viscous dissipation and chemical reaction effects</title><author>Kameswaran, P.K. ; Narayana, M. ; Sibanda, P. ; Murthy, P.V.S.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-fe82649a4b556ef9556a2633af4d45d714d683e2606533b06282013c1766f5093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Chemical reaction</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General and physical chemistry</topic><topic>Heat and mass transfer</topic><topic>Heat transfer</topic><topic>Magnetohydrodynamics and electrohydrodynamics</topic><topic>Mass transfer</topic><topic>Mathematical models</topic><topic>Matlab</topic><topic>Nanocomposites</topic><topic>Nanofluid flow</topic><topic>Nanofluids</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Physics</topic><topic>Silver</topic><topic>Soret effect</topic><topic>Stretching sheet</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of small particles, nanocrystals, nanotubes</topic><topic>Viscous dissipation</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kameswaran, P.K.</creatorcontrib><creatorcontrib>Narayana, M.</creatorcontrib><creatorcontrib>Sibanda, P.</creatorcontrib><creatorcontrib>Murthy, P.V.S.N.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kameswaran, P.K.</au><au>Narayana, M.</au><au>Sibanda, P.</au><au>Murthy, P.V.S.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydromagnetic nanofluid flow due to a stretching or shrinking sheet with viscous dissipation and chemical reaction effects</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>55</volume><issue>25-26</issue><spage>7587</spage><epage>7595</epage><pages>7587-7595</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>We investigate the convective heat and mass transfer in nanofluid flow over a stretching sheet subject to hydromagnetic, viscous dissipation, chemical reaction and Soret effects. Two types of nanofluids, namely Cu–water and Ag–water were studied. A similarity transformation was used to obtain a system of non-linear ordinary differential equations, which was then solved numerically using the Matlab “bvp4c” function. Numerical results were obtained for the skin friction coefficient, Nusselt number, Sherwood number as well as for the velocity, temperature and concentration profiles for selected values of the governing parameters, such as the nanoparticle volume fraction ϕ, the magnetic parameter M. For a fixed Prandtl number Pr=6.2 (corresponding to water) and different values of the magnetic field parameter and the nanoparticle volume fraction, we have shown that a good agreement exists between the present results and those in the literature. It was shown that the Cu–water nanofluid exhibits higher wall heat and mass transfer rates as compared to a Ag–water nanofluid. The influence of a magnetic field is to reduce both wall heat and mass transfer rates.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2012.07.065</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2012-12, Vol.55 (25-26), p.7587-7595
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_1671358501
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Chemical reaction
Chemistry
Colloidal state and disperse state
Condensed matter: structure, mechanical and thermal properties
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
General and physical chemistry
Heat and mass transfer
Heat transfer
Magnetohydrodynamics and electrohydrodynamics
Mass transfer
Mathematical models
Matlab
Nanocomposites
Nanofluid flow
Nanofluids
Nanomaterials
Nanostructure
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Physics
Silver
Soret effect
Stretching sheet
Theoretical studies. Data and constants. Metering
Thermal properties of condensed matter
Thermal properties of small particles, nanocrystals, nanotubes
Viscous dissipation
Walls
title Hydromagnetic nanofluid flow due to a stretching or shrinking sheet with viscous dissipation and chemical reaction effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A14%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydromagnetic%20nanofluid%20flow%20due%20to%20a%20stretching%20or%20shrinking%20sheet%20with%20viscous%20dissipation%20and%20chemical%20reaction%20effects&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Kameswaran,%20P.K.&rft.date=2012-12-01&rft.volume=55&rft.issue=25-26&rft.spage=7587&rft.epage=7595&rft.pages=7587-7595&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2012.07.065&rft_dat=%3Cproquest_cross%3E1171878705%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1171878705&rft_id=info:pmid/&rft_els_id=S0017931012006011&rfr_iscdi=true