Hydromagnetic nanofluid flow due to a stretching or shrinking sheet with viscous dissipation and chemical reaction effects
We investigate the convective heat and mass transfer in nanofluid flow over a stretching sheet subject to hydromagnetic, viscous dissipation, chemical reaction and Soret effects. Two types of nanofluids, namely Cu–water and Ag–water were studied. A similarity transformation was used to obtain a syst...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2012-12, Vol.55 (25-26), p.7587-7595 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7595 |
---|---|
container_issue | 25-26 |
container_start_page | 7587 |
container_title | International journal of heat and mass transfer |
container_volume | 55 |
creator | Kameswaran, P.K. Narayana, M. Sibanda, P. Murthy, P.V.S.N. |
description | We investigate the convective heat and mass transfer in nanofluid flow over a stretching sheet subject to hydromagnetic, viscous dissipation, chemical reaction and Soret effects. Two types of nanofluids, namely Cu–water and Ag–water were studied. A similarity transformation was used to obtain a system of non-linear ordinary differential equations, which was then solved numerically using the Matlab “bvp4c” function. Numerical results were obtained for the skin friction coefficient, Nusselt number, Sherwood number as well as for the velocity, temperature and concentration profiles for selected values of the governing parameters, such as the nanoparticle volume fraction ϕ, the magnetic parameter M. For a fixed Prandtl number Pr=6.2 (corresponding to water) and different values of the magnetic field parameter and the nanoparticle volume fraction, we have shown that a good agreement exists between the present results and those in the literature. It was shown that the Cu–water nanofluid exhibits higher wall heat and mass transfer rates as compared to a Ag–water nanofluid. The influence of a magnetic field is to reduce both wall heat and mass transfer rates. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2012.07.065 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671358501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931012006011</els_id><sourcerecordid>1171878705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-fe82649a4b556ef9556a2633af4d45d714d683e2606533b06282013c1766f5093</originalsourceid><addsrcrecordid>eNqNUcGOFCEUJEYTx9F_4GKyl26h6Ybum2ajrmYTL3omLDy2Gbth5DG7Wb9e2tl48aAXyCNFVb0qQi44aznj8s2hDYcZTFkNYskmoofcdox3LVMtk8MTsuOjmpqOj9NTsmOMq2YSnD0nLxAP28h6uSM_rx5cTqu5jVCCpdHE5JdTcNQv6Z66E9CSqKFVAoqdQ7ylKVOcc4jftwFngELvQ5npXUCbTkhdQAxHU0KK1ERH7QxrsGahGYz9_Qregy34kjzzZkF49XjvybcP779eXjXXXz5-unx33dhejKXxMHayn0x_MwwS_FRP00khjO9dPzjFeydHAZ2sSwtxw2Q31hiE5UpKP7BJ7MnFmfeY048TYNFrtQrLYiJUw5pLxcUwDvXTP6Fc1VBHxYYKfXuG2pwQM3h9zGE1-UFzpreG9EH_3ZDeGtJM6c3snrx-VDNYA_IVYwP-4albKyZGWXGfzzioKd2FyoI2QLTgQq5BapfC_4v-AgGNtJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1171878705</pqid></control><display><type>article</type><title>Hydromagnetic nanofluid flow due to a stretching or shrinking sheet with viscous dissipation and chemical reaction effects</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kameswaran, P.K. ; Narayana, M. ; Sibanda, P. ; Murthy, P.V.S.N.</creator><creatorcontrib>Kameswaran, P.K. ; Narayana, M. ; Sibanda, P. ; Murthy, P.V.S.N.</creatorcontrib><description>We investigate the convective heat and mass transfer in nanofluid flow over a stretching sheet subject to hydromagnetic, viscous dissipation, chemical reaction and Soret effects. Two types of nanofluids, namely Cu–water and Ag–water were studied. A similarity transformation was used to obtain a system of non-linear ordinary differential equations, which was then solved numerically using the Matlab “bvp4c” function. Numerical results were obtained for the skin friction coefficient, Nusselt number, Sherwood number as well as for the velocity, temperature and concentration profiles for selected values of the governing parameters, such as the nanoparticle volume fraction ϕ, the magnetic parameter M. For a fixed Prandtl number Pr=6.2 (corresponding to water) and different values of the magnetic field parameter and the nanoparticle volume fraction, we have shown that a good agreement exists between the present results and those in the literature. It was shown that the Cu–water nanofluid exhibits higher wall heat and mass transfer rates as compared to a Ag–water nanofluid. The influence of a magnetic field is to reduce both wall heat and mass transfer rates.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2012.07.065</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Chemical reaction ; Chemistry ; Colloidal state and disperse state ; Condensed matter: structure, mechanical and thermal properties ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; General and physical chemistry ; Heat and mass transfer ; Heat transfer ; Magnetohydrodynamics and electrohydrodynamics ; Mass transfer ; Mathematical models ; Matlab ; Nanocomposites ; Nanofluid flow ; Nanofluids ; Nanomaterials ; Nanostructure ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Physics ; Silver ; Soret effect ; Stretching sheet ; Theoretical studies. Data and constants. Metering ; Thermal properties of condensed matter ; Thermal properties of small particles, nanocrystals, nanotubes ; Viscous dissipation ; Walls</subject><ispartof>International journal of heat and mass transfer, 2012-12, Vol.55 (25-26), p.7587-7595</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-fe82649a4b556ef9556a2633af4d45d714d683e2606533b06282013c1766f5093</citedby><cites>FETCH-LOGICAL-c438t-fe82649a4b556ef9556a2633af4d45d714d683e2606533b06282013c1766f5093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.07.065$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26470386$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kameswaran, P.K.</creatorcontrib><creatorcontrib>Narayana, M.</creatorcontrib><creatorcontrib>Sibanda, P.</creatorcontrib><creatorcontrib>Murthy, P.V.S.N.</creatorcontrib><title>Hydromagnetic nanofluid flow due to a stretching or shrinking sheet with viscous dissipation and chemical reaction effects</title><title>International journal of heat and mass transfer</title><description>We investigate the convective heat and mass transfer in nanofluid flow over a stretching sheet subject to hydromagnetic, viscous dissipation, chemical reaction and Soret effects. Two types of nanofluids, namely Cu–water and Ag–water were studied. A similarity transformation was used to obtain a system of non-linear ordinary differential equations, which was then solved numerically using the Matlab “bvp4c” function. Numerical results were obtained for the skin friction coefficient, Nusselt number, Sherwood number as well as for the velocity, temperature and concentration profiles for selected values of the governing parameters, such as the nanoparticle volume fraction ϕ, the magnetic parameter M. For a fixed Prandtl number Pr=6.2 (corresponding to water) and different values of the magnetic field parameter and the nanoparticle volume fraction, we have shown that a good agreement exists between the present results and those in the literature. It was shown that the Cu–water nanofluid exhibits higher wall heat and mass transfer rates as compared to a Ag–water nanofluid. The influence of a magnetic field is to reduce both wall heat and mass transfer rates.</description><subject>Applied sciences</subject><subject>Chemical reaction</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General and physical chemistry</subject><subject>Heat and mass transfer</subject><subject>Heat transfer</subject><subject>Magnetohydrodynamics and electrohydrodynamics</subject><subject>Mass transfer</subject><subject>Mathematical models</subject><subject>Matlab</subject><subject>Nanocomposites</subject><subject>Nanofluid flow</subject><subject>Nanofluids</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Physics</subject><subject>Silver</subject><subject>Soret effect</subject><subject>Stretching sheet</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of small particles, nanocrystals, nanotubes</subject><subject>Viscous dissipation</subject><subject>Walls</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNUcGOFCEUJEYTx9F_4GKyl26h6Ybum2ajrmYTL3omLDy2Gbth5DG7Wb9e2tl48aAXyCNFVb0qQi44aznj8s2hDYcZTFkNYskmoofcdox3LVMtk8MTsuOjmpqOj9NTsmOMq2YSnD0nLxAP28h6uSM_rx5cTqu5jVCCpdHE5JdTcNQv6Z66E9CSqKFVAoqdQ7ylKVOcc4jftwFngELvQ5npXUCbTkhdQAxHU0KK1ERH7QxrsGahGYz9_Qregy34kjzzZkF49XjvybcP779eXjXXXz5-unx33dhejKXxMHayn0x_MwwS_FRP00khjO9dPzjFeydHAZ2sSwtxw2Q31hiE5UpKP7BJ7MnFmfeY048TYNFrtQrLYiJUw5pLxcUwDvXTP6Fc1VBHxYYKfXuG2pwQM3h9zGE1-UFzpreG9EH_3ZDeGtJM6c3snrx-VDNYA_IVYwP-4albKyZGWXGfzzioKd2FyoI2QLTgQq5BapfC_4v-AgGNtJQ</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Kameswaran, P.K.</creator><creator>Narayana, M.</creator><creator>Sibanda, P.</creator><creator>Murthy, P.V.S.N.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20121201</creationdate><title>Hydromagnetic nanofluid flow due to a stretching or shrinking sheet with viscous dissipation and chemical reaction effects</title><author>Kameswaran, P.K. ; Narayana, M. ; Sibanda, P. ; Murthy, P.V.S.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-fe82649a4b556ef9556a2633af4d45d714d683e2606533b06282013c1766f5093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Chemical reaction</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General and physical chemistry</topic><topic>Heat and mass transfer</topic><topic>Heat transfer</topic><topic>Magnetohydrodynamics and electrohydrodynamics</topic><topic>Mass transfer</topic><topic>Mathematical models</topic><topic>Matlab</topic><topic>Nanocomposites</topic><topic>Nanofluid flow</topic><topic>Nanofluids</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Physics</topic><topic>Silver</topic><topic>Soret effect</topic><topic>Stretching sheet</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of small particles, nanocrystals, nanotubes</topic><topic>Viscous dissipation</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kameswaran, P.K.</creatorcontrib><creatorcontrib>Narayana, M.</creatorcontrib><creatorcontrib>Sibanda, P.</creatorcontrib><creatorcontrib>Murthy, P.V.S.N.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kameswaran, P.K.</au><au>Narayana, M.</au><au>Sibanda, P.</au><au>Murthy, P.V.S.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydromagnetic nanofluid flow due to a stretching or shrinking sheet with viscous dissipation and chemical reaction effects</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>55</volume><issue>25-26</issue><spage>7587</spage><epage>7595</epage><pages>7587-7595</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>We investigate the convective heat and mass transfer in nanofluid flow over a stretching sheet subject to hydromagnetic, viscous dissipation, chemical reaction and Soret effects. Two types of nanofluids, namely Cu–water and Ag–water were studied. A similarity transformation was used to obtain a system of non-linear ordinary differential equations, which was then solved numerically using the Matlab “bvp4c” function. Numerical results were obtained for the skin friction coefficient, Nusselt number, Sherwood number as well as for the velocity, temperature and concentration profiles for selected values of the governing parameters, such as the nanoparticle volume fraction ϕ, the magnetic parameter M. For a fixed Prandtl number Pr=6.2 (corresponding to water) and different values of the magnetic field parameter and the nanoparticle volume fraction, we have shown that a good agreement exists between the present results and those in the literature. It was shown that the Cu–water nanofluid exhibits higher wall heat and mass transfer rates as compared to a Ag–water nanofluid. The influence of a magnetic field is to reduce both wall heat and mass transfer rates.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2012.07.065</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2012-12, Vol.55 (25-26), p.7587-7595 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671358501 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Chemical reaction Chemistry Colloidal state and disperse state Condensed matter: structure, mechanical and thermal properties Energy Energy. Thermal use of fuels Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) General and physical chemistry Heat and mass transfer Heat transfer Magnetohydrodynamics and electrohydrodynamics Mass transfer Mathematical models Matlab Nanocomposites Nanofluid flow Nanofluids Nanomaterials Nanostructure Physical and chemical studies. Granulometry. Electrokinetic phenomena Physics Silver Soret effect Stretching sheet Theoretical studies. Data and constants. Metering Thermal properties of condensed matter Thermal properties of small particles, nanocrystals, nanotubes Viscous dissipation Walls |
title | Hydromagnetic nanofluid flow due to a stretching or shrinking sheet with viscous dissipation and chemical reaction effects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A14%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydromagnetic%20nanofluid%20flow%20due%20to%20a%20stretching%20or%20shrinking%20sheet%20with%20viscous%20dissipation%20and%20chemical%20reaction%20effects&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Kameswaran,%20P.K.&rft.date=2012-12-01&rft.volume=55&rft.issue=25-26&rft.spage=7587&rft.epage=7595&rft.pages=7587-7595&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2012.07.065&rft_dat=%3Cproquest_cross%3E1171878705%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1171878705&rft_id=info:pmid/&rft_els_id=S0017931012006011&rfr_iscdi=true |