Comparison of exact and approximate optical designs for graded-interface distributed Bragg reflectors

The reflectance of a distributed Bragg reflector (DBR) is maximized when multiple reflections within the structure are phase-matched. DBRs with graded interfaces are often designed using approximations based on optical thickness or coupled mode theory: The former addresses phase-matching only approx...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in quantum electronics 1999-05, Vol.5 (3), p.582-589
Hauptverfasser: Sherriff, R.E., Feld, S.A., Loehr, J.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 589
container_issue 3
container_start_page 582
container_title IEEE journal of selected topics in quantum electronics
container_volume 5
creator Sherriff, R.E.
Feld, S.A.
Loehr, J.P.
description The reflectance of a distributed Bragg reflector (DBR) is maximized when multiple reflections within the structure are phase-matched. DBRs with graded interfaces are often designed using approximations based on optical thickness or coupled mode theory: The former addresses phase-matching only approximately, while the latter does not explicitly address phase-matching at all. By introducing the concept of a generalized interface, we demonstrate how to exactly phase-match Fabry-Perot cavities and DBRs containing arbitrary grades. The theoretical reflectance of exact and approximate mirror designs is compared for linear and asymmetric parabolic grades in a 25 period GaAs-AlAs DBR. For short, symmetric grades, the performance differences are quite small, but for longer, asymmetric grades, they can be significant. Our comparison suggests a simple modification of the optical thickness approach that optimizes its accuracy for asymmetric grades. Our generalization of reflectance phase-matching also has applicability beyond DBR design, since it applies to nonperiodic structures.
doi_str_mv 10.1109/2944.788421
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671354764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>788421</ieee_id><sourcerecordid>28225539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-5709b18b340fa2cc96dc43edcca022eb4ac08120c2dbf054b92e8d0790905d143</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosouK6evHnKSQTpOkmTNjnq4hcseFHwVtJkWiLdpiZZWP-9XXbx6GlemIeXmSfLLiksKAV1xxTni0pKzuhRNqNCyJwLzo6nDFWVsxI-T7OzGL8AQHIJswyXfj3q4KIfiG8JbrVJRA-W6HEMfuvWOiHxY3JG98RidN0QSesD6YK2aHM3JAytNkisiym4ZpPQkoegu44EbHs0yYd4np20uo94cZjz7OPp8X35kq_enl-X96vcFJSnXFSgGiqbgkOrmTGqtIYXaI3RwBg2XBuQlIFhtmlB8EYxlBYqBQqEpbyYZ9f73un27w3GVK9dNNj3ekC_iTWTjAlRqAm8-RekZUULwaty13m7R03wMU4_1WOYtISfmkK9s17vrNd76xN9tacdIv6Rh-UvZ5Z-Hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671354764</pqid></control><display><type>article</type><title>Comparison of exact and approximate optical designs for graded-interface distributed Bragg reflectors</title><source>IEEE Electronic Library (IEL)</source><creator>Sherriff, R.E. ; Feld, S.A. ; Loehr, J.P.</creator><creatorcontrib>Sherriff, R.E. ; Feld, S.A. ; Loehr, J.P.</creatorcontrib><description>The reflectance of a distributed Bragg reflector (DBR) is maximized when multiple reflections within the structure are phase-matched. DBRs with graded interfaces are often designed using approximations based on optical thickness or coupled mode theory: The former addresses phase-matching only approximately, while the latter does not explicitly address phase-matching at all. By introducing the concept of a generalized interface, we demonstrate how to exactly phase-match Fabry-Perot cavities and DBRs containing arbitrary grades. The theoretical reflectance of exact and approximate mirror designs is compared for linear and asymmetric parabolic grades in a 25 period GaAs-AlAs DBR. For short, symmetric grades, the performance differences are quite small, but for longer, asymmetric grades, they can be significant. Our comparison suggests a simple modification of the optical thickness approach that optimizes its accuracy for asymmetric grades. Our generalization of reflectance phase-matching also has applicability beyond DBR design, since it applies to nonperiodic structures.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/2944.788421</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation ; Asymmetry ; Bragg reflectors ; Coupled modes ; Distributed Bragg reflectors ; Frequency conversion ; Holes ; Optical design ; Optical frequency conversion ; Optical reflection ; Optical refraction ; Optical resonators ; Optical sensors ; Optical thickness ; Optical variables control ; Reflectance ; Reflectivity</subject><ispartof>IEEE journal of selected topics in quantum electronics, 1999-05, Vol.5 (3), p.582-589</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-5709b18b340fa2cc96dc43edcca022eb4ac08120c2dbf054b92e8d0790905d143</citedby><cites>FETCH-LOGICAL-c314t-5709b18b340fa2cc96dc43edcca022eb4ac08120c2dbf054b92e8d0790905d143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/788421$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/788421$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sherriff, R.E.</creatorcontrib><creatorcontrib>Feld, S.A.</creatorcontrib><creatorcontrib>Loehr, J.P.</creatorcontrib><title>Comparison of exact and approximate optical designs for graded-interface distributed Bragg reflectors</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>The reflectance of a distributed Bragg reflector (DBR) is maximized when multiple reflections within the structure are phase-matched. DBRs with graded interfaces are often designed using approximations based on optical thickness or coupled mode theory: The former addresses phase-matching only approximately, while the latter does not explicitly address phase-matching at all. By introducing the concept of a generalized interface, we demonstrate how to exactly phase-match Fabry-Perot cavities and DBRs containing arbitrary grades. The theoretical reflectance of exact and approximate mirror designs is compared for linear and asymmetric parabolic grades in a 25 period GaAs-AlAs DBR. For short, symmetric grades, the performance differences are quite small, but for longer, asymmetric grades, they can be significant. Our comparison suggests a simple modification of the optical thickness approach that optimizes its accuracy for asymmetric grades. Our generalization of reflectance phase-matching also has applicability beyond DBR design, since it applies to nonperiodic structures.</description><subject>Approximation</subject><subject>Asymmetry</subject><subject>Bragg reflectors</subject><subject>Coupled modes</subject><subject>Distributed Bragg reflectors</subject><subject>Frequency conversion</subject><subject>Holes</subject><subject>Optical design</subject><subject>Optical frequency conversion</subject><subject>Optical reflection</subject><subject>Optical refraction</subject><subject>Optical resonators</subject><subject>Optical sensors</subject><subject>Optical thickness</subject><subject>Optical variables control</subject><subject>Reflectance</subject><subject>Reflectivity</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LxDAQhosouK6evHnKSQTpOkmTNjnq4hcseFHwVtJkWiLdpiZZWP-9XXbx6GlemIeXmSfLLiksKAV1xxTni0pKzuhRNqNCyJwLzo6nDFWVsxI-T7OzGL8AQHIJswyXfj3q4KIfiG8JbrVJRA-W6HEMfuvWOiHxY3JG98RidN0QSesD6YK2aHM3JAytNkisiym4ZpPQkoegu44EbHs0yYd4np20uo94cZjz7OPp8X35kq_enl-X96vcFJSnXFSgGiqbgkOrmTGqtIYXaI3RwBg2XBuQlIFhtmlB8EYxlBYqBQqEpbyYZ9f73un27w3GVK9dNNj3ekC_iTWTjAlRqAm8-RekZUULwaty13m7R03wMU4_1WOYtISfmkK9s17vrNd76xN9tacdIv6Rh-UvZ5Z-Hg</recordid><startdate>19990501</startdate><enddate>19990501</enddate><creator>Sherriff, R.E.</creator><creator>Feld, S.A.</creator><creator>Loehr, J.P.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>19990501</creationdate><title>Comparison of exact and approximate optical designs for graded-interface distributed Bragg reflectors</title><author>Sherriff, R.E. ; Feld, S.A. ; Loehr, J.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-5709b18b340fa2cc96dc43edcca022eb4ac08120c2dbf054b92e8d0790905d143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Approximation</topic><topic>Asymmetry</topic><topic>Bragg reflectors</topic><topic>Coupled modes</topic><topic>Distributed Bragg reflectors</topic><topic>Frequency conversion</topic><topic>Holes</topic><topic>Optical design</topic><topic>Optical frequency conversion</topic><topic>Optical reflection</topic><topic>Optical refraction</topic><topic>Optical resonators</topic><topic>Optical sensors</topic><topic>Optical thickness</topic><topic>Optical variables control</topic><topic>Reflectance</topic><topic>Reflectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sherriff, R.E.</creatorcontrib><creatorcontrib>Feld, S.A.</creatorcontrib><creatorcontrib>Loehr, J.P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sherriff, R.E.</au><au>Feld, S.A.</au><au>Loehr, J.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of exact and approximate optical designs for graded-interface distributed Bragg reflectors</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>1999-05-01</date><risdate>1999</risdate><volume>5</volume><issue>3</issue><spage>582</spage><epage>589</epage><pages>582-589</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>The reflectance of a distributed Bragg reflector (DBR) is maximized when multiple reflections within the structure are phase-matched. DBRs with graded interfaces are often designed using approximations based on optical thickness or coupled mode theory: The former addresses phase-matching only approximately, while the latter does not explicitly address phase-matching at all. By introducing the concept of a generalized interface, we demonstrate how to exactly phase-match Fabry-Perot cavities and DBRs containing arbitrary grades. The theoretical reflectance of exact and approximate mirror designs is compared for linear and asymmetric parabolic grades in a 25 period GaAs-AlAs DBR. For short, symmetric grades, the performance differences are quite small, but for longer, asymmetric grades, they can be significant. Our comparison suggests a simple modification of the optical thickness approach that optimizes its accuracy for asymmetric grades. Our generalization of reflectance phase-matching also has applicability beyond DBR design, since it applies to nonperiodic structures.</abstract><pub>IEEE</pub><doi>10.1109/2944.788421</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-260X
ispartof IEEE journal of selected topics in quantum electronics, 1999-05, Vol.5 (3), p.582-589
issn 1077-260X
1558-4542
language eng
recordid cdi_proquest_miscellaneous_1671354764
source IEEE Electronic Library (IEL)
subjects Approximation
Asymmetry
Bragg reflectors
Coupled modes
Distributed Bragg reflectors
Frequency conversion
Holes
Optical design
Optical frequency conversion
Optical reflection
Optical refraction
Optical resonators
Optical sensors
Optical thickness
Optical variables control
Reflectance
Reflectivity
title Comparison of exact and approximate optical designs for graded-interface distributed Bragg reflectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A33%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20exact%20and%20approximate%20optical%20designs%20for%20graded-interface%20distributed%20Bragg%20reflectors&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Sherriff,%20R.E.&rft.date=1999-05-01&rft.volume=5&rft.issue=3&rft.spage=582&rft.epage=589&rft.pages=582-589&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/2944.788421&rft_dat=%3Cproquest_RIE%3E28225539%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671354764&rft_id=info:pmid/&rft_ieee_id=788421&rfr_iscdi=true