Comparison of exact and approximate optical designs for graded-interface distributed Bragg reflectors
The reflectance of a distributed Bragg reflector (DBR) is maximized when multiple reflections within the structure are phase-matched. DBRs with graded interfaces are often designed using approximations based on optical thickness or coupled mode theory: The former addresses phase-matching only approx...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in quantum electronics 1999-05, Vol.5 (3), p.582-589 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 589 |
---|---|
container_issue | 3 |
container_start_page | 582 |
container_title | IEEE journal of selected topics in quantum electronics |
container_volume | 5 |
creator | Sherriff, R.E. Feld, S.A. Loehr, J.P. |
description | The reflectance of a distributed Bragg reflector (DBR) is maximized when multiple reflections within the structure are phase-matched. DBRs with graded interfaces are often designed using approximations based on optical thickness or coupled mode theory: The former addresses phase-matching only approximately, while the latter does not explicitly address phase-matching at all. By introducing the concept of a generalized interface, we demonstrate how to exactly phase-match Fabry-Perot cavities and DBRs containing arbitrary grades. The theoretical reflectance of exact and approximate mirror designs is compared for linear and asymmetric parabolic grades in a 25 period GaAs-AlAs DBR. For short, symmetric grades, the performance differences are quite small, but for longer, asymmetric grades, they can be significant. Our comparison suggests a simple modification of the optical thickness approach that optimizes its accuracy for asymmetric grades. Our generalization of reflectance phase-matching also has applicability beyond DBR design, since it applies to nonperiodic structures. |
doi_str_mv | 10.1109/2944.788421 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671354764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>788421</ieee_id><sourcerecordid>28225539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-5709b18b340fa2cc96dc43edcca022eb4ac08120c2dbf054b92e8d0790905d143</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosouK6evHnKSQTpOkmTNjnq4hcseFHwVtJkWiLdpiZZWP-9XXbx6GlemIeXmSfLLiksKAV1xxTni0pKzuhRNqNCyJwLzo6nDFWVsxI-T7OzGL8AQHIJswyXfj3q4KIfiG8JbrVJRA-W6HEMfuvWOiHxY3JG98RidN0QSesD6YK2aHM3JAytNkisiym4ZpPQkoegu44EbHs0yYd4np20uo94cZjz7OPp8X35kq_enl-X96vcFJSnXFSgGiqbgkOrmTGqtIYXaI3RwBg2XBuQlIFhtmlB8EYxlBYqBQqEpbyYZ9f73un27w3GVK9dNNj3ekC_iTWTjAlRqAm8-RekZUULwaty13m7R03wMU4_1WOYtISfmkK9s17vrNd76xN9tacdIv6Rh-UvZ5Z-Hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671354764</pqid></control><display><type>article</type><title>Comparison of exact and approximate optical designs for graded-interface distributed Bragg reflectors</title><source>IEEE Electronic Library (IEL)</source><creator>Sherriff, R.E. ; Feld, S.A. ; Loehr, J.P.</creator><creatorcontrib>Sherriff, R.E. ; Feld, S.A. ; Loehr, J.P.</creatorcontrib><description>The reflectance of a distributed Bragg reflector (DBR) is maximized when multiple reflections within the structure are phase-matched. DBRs with graded interfaces are often designed using approximations based on optical thickness or coupled mode theory: The former addresses phase-matching only approximately, while the latter does not explicitly address phase-matching at all. By introducing the concept of a generalized interface, we demonstrate how to exactly phase-match Fabry-Perot cavities and DBRs containing arbitrary grades. The theoretical reflectance of exact and approximate mirror designs is compared for linear and asymmetric parabolic grades in a 25 period GaAs-AlAs DBR. For short, symmetric grades, the performance differences are quite small, but for longer, asymmetric grades, they can be significant. Our comparison suggests a simple modification of the optical thickness approach that optimizes its accuracy for asymmetric grades. Our generalization of reflectance phase-matching also has applicability beyond DBR design, since it applies to nonperiodic structures.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/2944.788421</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation ; Asymmetry ; Bragg reflectors ; Coupled modes ; Distributed Bragg reflectors ; Frequency conversion ; Holes ; Optical design ; Optical frequency conversion ; Optical reflection ; Optical refraction ; Optical resonators ; Optical sensors ; Optical thickness ; Optical variables control ; Reflectance ; Reflectivity</subject><ispartof>IEEE journal of selected topics in quantum electronics, 1999-05, Vol.5 (3), p.582-589</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-5709b18b340fa2cc96dc43edcca022eb4ac08120c2dbf054b92e8d0790905d143</citedby><cites>FETCH-LOGICAL-c314t-5709b18b340fa2cc96dc43edcca022eb4ac08120c2dbf054b92e8d0790905d143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/788421$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/788421$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sherriff, R.E.</creatorcontrib><creatorcontrib>Feld, S.A.</creatorcontrib><creatorcontrib>Loehr, J.P.</creatorcontrib><title>Comparison of exact and approximate optical designs for graded-interface distributed Bragg reflectors</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>The reflectance of a distributed Bragg reflector (DBR) is maximized when multiple reflections within the structure are phase-matched. DBRs with graded interfaces are often designed using approximations based on optical thickness or coupled mode theory: The former addresses phase-matching only approximately, while the latter does not explicitly address phase-matching at all. By introducing the concept of a generalized interface, we demonstrate how to exactly phase-match Fabry-Perot cavities and DBRs containing arbitrary grades. The theoretical reflectance of exact and approximate mirror designs is compared for linear and asymmetric parabolic grades in a 25 period GaAs-AlAs DBR. For short, symmetric grades, the performance differences are quite small, but for longer, asymmetric grades, they can be significant. Our comparison suggests a simple modification of the optical thickness approach that optimizes its accuracy for asymmetric grades. Our generalization of reflectance phase-matching also has applicability beyond DBR design, since it applies to nonperiodic structures.</description><subject>Approximation</subject><subject>Asymmetry</subject><subject>Bragg reflectors</subject><subject>Coupled modes</subject><subject>Distributed Bragg reflectors</subject><subject>Frequency conversion</subject><subject>Holes</subject><subject>Optical design</subject><subject>Optical frequency conversion</subject><subject>Optical reflection</subject><subject>Optical refraction</subject><subject>Optical resonators</subject><subject>Optical sensors</subject><subject>Optical thickness</subject><subject>Optical variables control</subject><subject>Reflectance</subject><subject>Reflectivity</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LxDAQhosouK6evHnKSQTpOkmTNjnq4hcseFHwVtJkWiLdpiZZWP-9XXbx6GlemIeXmSfLLiksKAV1xxTni0pKzuhRNqNCyJwLzo6nDFWVsxI-T7OzGL8AQHIJswyXfj3q4KIfiG8JbrVJRA-W6HEMfuvWOiHxY3JG98RidN0QSesD6YK2aHM3JAytNkisiym4ZpPQkoegu44EbHs0yYd4np20uo94cZjz7OPp8X35kq_enl-X96vcFJSnXFSgGiqbgkOrmTGqtIYXaI3RwBg2XBuQlIFhtmlB8EYxlBYqBQqEpbyYZ9f73un27w3GVK9dNNj3ekC_iTWTjAlRqAm8-RekZUULwaty13m7R03wMU4_1WOYtISfmkK9s17vrNd76xN9tacdIv6Rh-UvZ5Z-Hg</recordid><startdate>19990501</startdate><enddate>19990501</enddate><creator>Sherriff, R.E.</creator><creator>Feld, S.A.</creator><creator>Loehr, J.P.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>19990501</creationdate><title>Comparison of exact and approximate optical designs for graded-interface distributed Bragg reflectors</title><author>Sherriff, R.E. ; Feld, S.A. ; Loehr, J.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-5709b18b340fa2cc96dc43edcca022eb4ac08120c2dbf054b92e8d0790905d143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Approximation</topic><topic>Asymmetry</topic><topic>Bragg reflectors</topic><topic>Coupled modes</topic><topic>Distributed Bragg reflectors</topic><topic>Frequency conversion</topic><topic>Holes</topic><topic>Optical design</topic><topic>Optical frequency conversion</topic><topic>Optical reflection</topic><topic>Optical refraction</topic><topic>Optical resonators</topic><topic>Optical sensors</topic><topic>Optical thickness</topic><topic>Optical variables control</topic><topic>Reflectance</topic><topic>Reflectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sherriff, R.E.</creatorcontrib><creatorcontrib>Feld, S.A.</creatorcontrib><creatorcontrib>Loehr, J.P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sherriff, R.E.</au><au>Feld, S.A.</au><au>Loehr, J.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of exact and approximate optical designs for graded-interface distributed Bragg reflectors</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>1999-05-01</date><risdate>1999</risdate><volume>5</volume><issue>3</issue><spage>582</spage><epage>589</epage><pages>582-589</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>The reflectance of a distributed Bragg reflector (DBR) is maximized when multiple reflections within the structure are phase-matched. DBRs with graded interfaces are often designed using approximations based on optical thickness or coupled mode theory: The former addresses phase-matching only approximately, while the latter does not explicitly address phase-matching at all. By introducing the concept of a generalized interface, we demonstrate how to exactly phase-match Fabry-Perot cavities and DBRs containing arbitrary grades. The theoretical reflectance of exact and approximate mirror designs is compared for linear and asymmetric parabolic grades in a 25 period GaAs-AlAs DBR. For short, symmetric grades, the performance differences are quite small, but for longer, asymmetric grades, they can be significant. Our comparison suggests a simple modification of the optical thickness approach that optimizes its accuracy for asymmetric grades. Our generalization of reflectance phase-matching also has applicability beyond DBR design, since it applies to nonperiodic structures.</abstract><pub>IEEE</pub><doi>10.1109/2944.788421</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-260X |
ispartof | IEEE journal of selected topics in quantum electronics, 1999-05, Vol.5 (3), p.582-589 |
issn | 1077-260X 1558-4542 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671354764 |
source | IEEE Electronic Library (IEL) |
subjects | Approximation Asymmetry Bragg reflectors Coupled modes Distributed Bragg reflectors Frequency conversion Holes Optical design Optical frequency conversion Optical reflection Optical refraction Optical resonators Optical sensors Optical thickness Optical variables control Reflectance Reflectivity |
title | Comparison of exact and approximate optical designs for graded-interface distributed Bragg reflectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A33%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20exact%20and%20approximate%20optical%20designs%20for%20graded-interface%20distributed%20Bragg%20reflectors&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Sherriff,%20R.E.&rft.date=1999-05-01&rft.volume=5&rft.issue=3&rft.spage=582&rft.epage=589&rft.pages=582-589&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/2944.788421&rft_dat=%3Cproquest_RIE%3E28225539%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671354764&rft_id=info:pmid/&rft_ieee_id=788421&rfr_iscdi=true |