Self-encapsulated hollow microstructures formed by electric field-assisted capillarity
Hollow microstructures serve many useful applications in the fields of microsystems, chemistry, photonics, biology and others. Current fabrication methods of artificial hollow microstructures require multiple fabrication steps and expensive manufacturing tools. The paper reports a unique one-step fa...
Gespeichert in:
Veröffentlicht in: | Microfluidics and nanofluidics 2012-07, Vol.13 (1), p.75-82 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 82 |
---|---|
container_issue | 1 |
container_start_page | 75 |
container_title | Microfluidics and nanofluidics |
container_volume | 13 |
creator | Chen, H. Yu, W. Cargill, S. Patel, M. K. Bailey, C. Tonry, C. Desmulliez, M. P. Y. |
description | Hollow microstructures serve many useful applications in the fields of microsystems, chemistry, photonics, biology and others. Current fabrication methods of artificial hollow microstructures require multiple fabrication steps and expensive manufacturing tools. The paper reports a unique one-step fabrication process for the growth of hollow polymeric microstructures based on electric field-assisted capillary action. This method demonstrates the manufacturing of self-encapsulated microstructures such as hollow microchannels and microcapsules of around 100-μm height from an initial polymer thickness of 22 μm. Microstructure caps of several microns thickness have been shown to keep their shape under bending or delamination from the substrate. The inner surface of hollow microstructures is shown to be smooth, which is difficult to achieve with current methods. More complicated structures, such as a microcapsule array connected with hollow microchannels, have also been manufactured with this method. Numerical simulation of the resist growth process using COMSOL Multiphysics finite element analysis software has resulted in good agreement between simulated and experimental results on the overall shape of the resulting structures. These results are very positive and demonstrate the speed, versatility and cost-effectiveness of the method. |
doi_str_mv | 10.1007/s10404-012-0942-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671353541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785127891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-5b10c9e733638c1830f63f0f5a97b3dddecae34836499cca49fedc19e1baeaba3</originalsourceid><addsrcrecordid>eNp1kM1r3DAQxU1poOmmf0BvhlLoRYlGkmXrWJbmAwI55OMqZHnUKmjtrcam7H8fLbuEUMhpBub3Hm9eVX0Ffg6ctxcEXHHFOAjGjRJMf6hOQYNkyhj-8XXvxKfqM9Ez56oVwE-rp3tMgeHo3ZaW5GYc6j9TStO_ehN9nmjOi5-XjFSHKW_Ktd_VmNDPOfo6REwDc0SR9sLiEVNyOc67s-okuET45ThX1ePlr4f1Nbu9u7pZ_7xlXrZmZk0P3BtspdSy89BJHrQMPDTOtL0chgG9Q6k6qcsb3jtlAg4eDELv0PVOrqofB99tnv4uSLPdRPJYUow4LWRBtyAb2Sgo6Lf_0OdpyWNJZ4GbRgsFnSoUHKj985Qx2G2OG5d3BbL7pu2haVuatvumrS6a70dnR96lkN3oI70KhQYhWi0KJw4cldP4G_PbBO-ZvwAA6Y8_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1095624184</pqid></control><display><type>article</type><title>Self-encapsulated hollow microstructures formed by electric field-assisted capillarity</title><source>SpringerLink_现刊</source><creator>Chen, H. ; Yu, W. ; Cargill, S. ; Patel, M. K. ; Bailey, C. ; Tonry, C. ; Desmulliez, M. P. Y.</creator><creatorcontrib>Chen, H. ; Yu, W. ; Cargill, S. ; Patel, M. K. ; Bailey, C. ; Tonry, C. ; Desmulliez, M. P. Y.</creatorcontrib><description>Hollow microstructures serve many useful applications in the fields of microsystems, chemistry, photonics, biology and others. Current fabrication methods of artificial hollow microstructures require multiple fabrication steps and expensive manufacturing tools. The paper reports a unique one-step fabrication process for the growth of hollow polymeric microstructures based on electric field-assisted capillary action. This method demonstrates the manufacturing of self-encapsulated microstructures such as hollow microchannels and microcapsules of around 100-μm height from an initial polymer thickness of 22 μm. Microstructure caps of several microns thickness have been shown to keep their shape under bending or delamination from the substrate. The inner surface of hollow microstructures is shown to be smooth, which is difficult to achieve with current methods. More complicated structures, such as a microcapsule array connected with hollow microchannels, have also been manufactured with this method. Numerical simulation of the resist growth process using COMSOL Multiphysics finite element analysis software has resulted in good agreement between simulated and experimental results on the overall shape of the resulting structures. These results are very positive and demonstrate the speed, versatility and cost-effectiveness of the method.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-012-0942-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analytical Chemistry ; Applied fluid mechanics ; Arrays ; Biomedical Engineering and Bioengineering ; Capillarity ; Computer programs ; Computer simulation ; Electric fields ; Engineering ; Engineering Fluid Dynamics ; Exact sciences and technology ; Fabrication ; Fluid dynamics ; Fluidics ; Fundamental areas of phenomenology (including applications) ; Microchannels ; Microfluidics ; Microstructure ; Nanostructure ; Nanotechnology and Microengineering ; Physics ; Polymers ; Research Paper</subject><ispartof>Microfluidics and nanofluidics, 2012-07, Vol.13 (1), p.75-82</ispartof><rights>Springer-Verlag 2012</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-5b10c9e733638c1830f63f0f5a97b3dddecae34836499cca49fedc19e1baeaba3</citedby><cites>FETCH-LOGICAL-c379t-5b10c9e733638c1830f63f0f5a97b3dddecae34836499cca49fedc19e1baeaba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10404-012-0942-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10404-012-0942-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26122762$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, H.</creatorcontrib><creatorcontrib>Yu, W.</creatorcontrib><creatorcontrib>Cargill, S.</creatorcontrib><creatorcontrib>Patel, M. K.</creatorcontrib><creatorcontrib>Bailey, C.</creatorcontrib><creatorcontrib>Tonry, C.</creatorcontrib><creatorcontrib>Desmulliez, M. P. Y.</creatorcontrib><title>Self-encapsulated hollow microstructures formed by electric field-assisted capillarity</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>Hollow microstructures serve many useful applications in the fields of microsystems, chemistry, photonics, biology and others. Current fabrication methods of artificial hollow microstructures require multiple fabrication steps and expensive manufacturing tools. The paper reports a unique one-step fabrication process for the growth of hollow polymeric microstructures based on electric field-assisted capillary action. This method demonstrates the manufacturing of self-encapsulated microstructures such as hollow microchannels and microcapsules of around 100-μm height from an initial polymer thickness of 22 μm. Microstructure caps of several microns thickness have been shown to keep their shape under bending or delamination from the substrate. The inner surface of hollow microstructures is shown to be smooth, which is difficult to achieve with current methods. More complicated structures, such as a microcapsule array connected with hollow microchannels, have also been manufactured with this method. Numerical simulation of the resist growth process using COMSOL Multiphysics finite element analysis software has resulted in good agreement between simulated and experimental results on the overall shape of the resulting structures. These results are very positive and demonstrate the speed, versatility and cost-effectiveness of the method.</description><subject>Analytical Chemistry</subject><subject>Applied fluid mechanics</subject><subject>Arrays</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Capillarity</subject><subject>Computer programs</subject><subject>Computer simulation</subject><subject>Electric fields</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>Fluid dynamics</subject><subject>Fluidics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Microchannels</subject><subject>Microfluidics</subject><subject>Microstructure</subject><subject>Nanostructure</subject><subject>Nanotechnology and Microengineering</subject><subject>Physics</subject><subject>Polymers</subject><subject>Research Paper</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1r3DAQxU1poOmmf0BvhlLoRYlGkmXrWJbmAwI55OMqZHnUKmjtrcam7H8fLbuEUMhpBub3Hm9eVX0Ffg6ctxcEXHHFOAjGjRJMf6hOQYNkyhj-8XXvxKfqM9Ez56oVwE-rp3tMgeHo3ZaW5GYc6j9TStO_ehN9nmjOi5-XjFSHKW_Ktd_VmNDPOfo6REwDc0SR9sLiEVNyOc67s-okuET45ThX1ePlr4f1Nbu9u7pZ_7xlXrZmZk0P3BtspdSy89BJHrQMPDTOtL0chgG9Q6k6qcsb3jtlAg4eDELv0PVOrqofB99tnv4uSLPdRPJYUow4LWRBtyAb2Sgo6Lf_0OdpyWNJZ4GbRgsFnSoUHKj985Qx2G2OG5d3BbL7pu2haVuatvumrS6a70dnR96lkN3oI70KhQYhWi0KJw4cldP4G_PbBO-ZvwAA6Y8_</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Chen, H.</creator><creator>Yu, W.</creator><creator>Cargill, S.</creator><creator>Patel, M. K.</creator><creator>Bailey, C.</creator><creator>Tonry, C.</creator><creator>Desmulliez, M. P. Y.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20120701</creationdate><title>Self-encapsulated hollow microstructures formed by electric field-assisted capillarity</title><author>Chen, H. ; Yu, W. ; Cargill, S. ; Patel, M. K. ; Bailey, C. ; Tonry, C. ; Desmulliez, M. P. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-5b10c9e733638c1830f63f0f5a97b3dddecae34836499cca49fedc19e1baeaba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analytical Chemistry</topic><topic>Applied fluid mechanics</topic><topic>Arrays</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Capillarity</topic><topic>Computer programs</topic><topic>Computer simulation</topic><topic>Electric fields</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>Fluid dynamics</topic><topic>Fluidics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Microchannels</topic><topic>Microfluidics</topic><topic>Microstructure</topic><topic>Nanostructure</topic><topic>Nanotechnology and Microengineering</topic><topic>Physics</topic><topic>Polymers</topic><topic>Research Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, H.</creatorcontrib><creatorcontrib>Yu, W.</creatorcontrib><creatorcontrib>Cargill, S.</creatorcontrib><creatorcontrib>Patel, M. K.</creatorcontrib><creatorcontrib>Bailey, C.</creatorcontrib><creatorcontrib>Tonry, C.</creatorcontrib><creatorcontrib>Desmulliez, M. P. Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, H.</au><au>Yu, W.</au><au>Cargill, S.</au><au>Patel, M. K.</au><au>Bailey, C.</au><au>Tonry, C.</au><au>Desmulliez, M. P. Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-encapsulated hollow microstructures formed by electric field-assisted capillarity</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2012-07-01</date><risdate>2012</risdate><volume>13</volume><issue>1</issue><spage>75</spage><epage>82</epage><pages>75-82</pages><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>Hollow microstructures serve many useful applications in the fields of microsystems, chemistry, photonics, biology and others. Current fabrication methods of artificial hollow microstructures require multiple fabrication steps and expensive manufacturing tools. The paper reports a unique one-step fabrication process for the growth of hollow polymeric microstructures based on electric field-assisted capillary action. This method demonstrates the manufacturing of self-encapsulated microstructures such as hollow microchannels and microcapsules of around 100-μm height from an initial polymer thickness of 22 μm. Microstructure caps of several microns thickness have been shown to keep their shape under bending or delamination from the substrate. The inner surface of hollow microstructures is shown to be smooth, which is difficult to achieve with current methods. More complicated structures, such as a microcapsule array connected with hollow microchannels, have also been manufactured with this method. Numerical simulation of the resist growth process using COMSOL Multiphysics finite element analysis software has resulted in good agreement between simulated and experimental results on the overall shape of the resulting structures. These results are very positive and demonstrate the speed, versatility and cost-effectiveness of the method.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10404-012-0942-6</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-4982 |
ispartof | Microfluidics and nanofluidics, 2012-07, Vol.13 (1), p.75-82 |
issn | 1613-4982 1613-4990 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671353541 |
source | SpringerLink_现刊 |
subjects | Analytical Chemistry Applied fluid mechanics Arrays Biomedical Engineering and Bioengineering Capillarity Computer programs Computer simulation Electric fields Engineering Engineering Fluid Dynamics Exact sciences and technology Fabrication Fluid dynamics Fluidics Fundamental areas of phenomenology (including applications) Microchannels Microfluidics Microstructure Nanostructure Nanotechnology and Microengineering Physics Polymers Research Paper |
title | Self-encapsulated hollow microstructures formed by electric field-assisted capillarity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A04%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-encapsulated%20hollow%20microstructures%20formed%20by%20electric%20field-assisted%20capillarity&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Chen,%20H.&rft.date=2012-07-01&rft.volume=13&rft.issue=1&rft.spage=75&rft.epage=82&rft.pages=75-82&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-012-0942-6&rft_dat=%3Cproquest_cross%3E2785127891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1095624184&rft_id=info:pmid/&rfr_iscdi=true |