Improving Head Movement Tolerance of Cross-Ratio Based Eye Trackers

When first introduced, the cross-ratio ( CR ) based remote eye tracking method offered many attractive features for natural human gaze-based interaction, such as simple camera setup, no user calibration, and invariance to head motion. However, due to many simplification assumptions, current CR -base...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer vision 2013-02, Vol.101 (3), p.459-481
Hauptverfasser: Coutinho, Flavio L., Morimoto, Carlos H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 481
container_issue 3
container_start_page 459
container_title International journal of computer vision
container_volume 101
creator Coutinho, Flavio L.
Morimoto, Carlos H.
description When first introduced, the cross-ratio ( CR ) based remote eye tracking method offered many attractive features for natural human gaze-based interaction, such as simple camera setup, no user calibration, and invariance to head motion. However, due to many simplification assumptions, current CR -based methods are still sensitive to head movements. In this paper, we revisit the CR -based method and introduce two new extensions to improve the robustness of the method to head motion. The first method dynamically compensates for scale changes in the corneal reflection pattern, and the second method estimates true coplanar eye features so that the cross-ratio can be applied. We present real-time implementations of both systems, and compare the performance of these new methods using simulations and user experiments. Our results show a significant improvement in robustness to head motion and, for the user experiments in particular, an average reduction of up to 40 % in gaze estimation error was observed.
doi_str_mv 10.1007/s11263-012-0541-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671348833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A337071155</galeid><sourcerecordid>A337071155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-ecfdccf6fdada9d3699beea7b2782aa31ddc19ee06e7600bb97397ca9b83e6bc3</originalsourceid><addsrcrecordid>eNp1kcFq3DAQhkVpoNukD9CboZf2oHRGsi3rmCxJs5AQSLdnIUvjxaltJZI3JG8fLe6hKRQdBsT3Db_0M_YZ4RQB1PeEKGrJAQWHqkTevGMrrJTkWEL1nq1AC-BVrfED-5jSPQCIRsgVW2_Ghxie-mlXXJH1xU14opGmudiGgaKdHBWhK9YxpMTv7NyH4twm8sXFCxXbaN1viumEHXV2SPTpzzxmvy4vtusrfn37Y7M-u-auFGLm5DrvXFd33nqrvay1bomsaoVqhLUSvXeoiaAmVQO0rVZSK2d120iqWyeP2ddlb078uKc0m7FPjobBThT2yWCtUJZNI2VGv_yD3od9nHI6g6KpJGpZQqZOF2pnBzL91IU5PykfT2PvwkRdn-_PpFSgEKsqC9_eCJmZ6Xne2X1KZvPz7i2LC-sOnxepMw-xH218MQjm0JlZOjO5M3PozDTZEYuTMjvtKP4V-7_SK1hil6M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1285319340</pqid></control><display><type>article</type><title>Improving Head Movement Tolerance of Cross-Ratio Based Eye Trackers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Coutinho, Flavio L. ; Morimoto, Carlos H.</creator><creatorcontrib>Coutinho, Flavio L. ; Morimoto, Carlos H.</creatorcontrib><description>When first introduced, the cross-ratio ( CR ) based remote eye tracking method offered many attractive features for natural human gaze-based interaction, such as simple camera setup, no user calibration, and invariance to head motion. However, due to many simplification assumptions, current CR -based methods are still sensitive to head movements. In this paper, we revisit the CR -based method and introduce two new extensions to improve the robustness of the method to head motion. The first method dynamically compensates for scale changes in the corneal reflection pattern, and the second method estimates true coplanar eye features so that the cross-ratio can be applied. We present real-time implementations of both systems, and compare the performance of these new methods using simulations and user experiments. Our results show a significant improvement in robustness to head motion and, for the user experiments in particular, an average reduction of up to 40 % in gaze estimation error was observed.</description><identifier>ISSN: 0920-5691</identifier><identifier>EISSN: 1573-1405</identifier><identifier>DOI: 10.1007/s11263-012-0541-8</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Accuracy ; Artificial Intelligence ; Calibration ; Cameras ; Chromium ; Computer Imaging ; Computer Science ; Computer simulation ; Cornea ; Dynamical systems ; Estimates ; Eye movements ; Geometry ; Head motions ; Head movement ; Headgear ; Image Processing and Computer Vision ; Interactive computer systems ; International ; Iris ; Methods ; Motion control ; Pattern Recognition ; Pattern Recognition and Graphics ; Reduction ; Robustness ; Studies ; Vision</subject><ispartof>International journal of computer vision, 2013-02, Vol.101 (3), p.459-481</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><rights>COPYRIGHT 2013 Springer</rights><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-ecfdccf6fdada9d3699beea7b2782aa31ddc19ee06e7600bb97397ca9b83e6bc3</citedby><cites>FETCH-LOGICAL-c422t-ecfdccf6fdada9d3699beea7b2782aa31ddc19ee06e7600bb97397ca9b83e6bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11263-012-0541-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11263-012-0541-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Coutinho, Flavio L.</creatorcontrib><creatorcontrib>Morimoto, Carlos H.</creatorcontrib><title>Improving Head Movement Tolerance of Cross-Ratio Based Eye Trackers</title><title>International journal of computer vision</title><addtitle>Int J Comput Vis</addtitle><description>When first introduced, the cross-ratio ( CR ) based remote eye tracking method offered many attractive features for natural human gaze-based interaction, such as simple camera setup, no user calibration, and invariance to head motion. However, due to many simplification assumptions, current CR -based methods are still sensitive to head movements. In this paper, we revisit the CR -based method and introduce two new extensions to improve the robustness of the method to head motion. The first method dynamically compensates for scale changes in the corneal reflection pattern, and the second method estimates true coplanar eye features so that the cross-ratio can be applied. We present real-time implementations of both systems, and compare the performance of these new methods using simulations and user experiments. Our results show a significant improvement in robustness to head motion and, for the user experiments in particular, an average reduction of up to 40 % in gaze estimation error was observed.</description><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>Calibration</subject><subject>Cameras</subject><subject>Chromium</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Cornea</subject><subject>Dynamical systems</subject><subject>Estimates</subject><subject>Eye movements</subject><subject>Geometry</subject><subject>Head motions</subject><subject>Head movement</subject><subject>Headgear</subject><subject>Image Processing and Computer Vision</subject><subject>Interactive computer systems</subject><subject>International</subject><subject>Iris</subject><subject>Methods</subject><subject>Motion control</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Reduction</subject><subject>Robustness</subject><subject>Studies</subject><subject>Vision</subject><issn>0920-5691</issn><issn>1573-1405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kcFq3DAQhkVpoNukD9CboZf2oHRGsi3rmCxJs5AQSLdnIUvjxaltJZI3JG8fLe6hKRQdBsT3Db_0M_YZ4RQB1PeEKGrJAQWHqkTevGMrrJTkWEL1nq1AC-BVrfED-5jSPQCIRsgVW2_Ghxie-mlXXJH1xU14opGmudiGgaKdHBWhK9YxpMTv7NyH4twm8sXFCxXbaN1viumEHXV2SPTpzzxmvy4vtusrfn37Y7M-u-auFGLm5DrvXFd33nqrvay1bomsaoVqhLUSvXeoiaAmVQO0rVZSK2d120iqWyeP2ddlb078uKc0m7FPjobBThT2yWCtUJZNI2VGv_yD3od9nHI6g6KpJGpZQqZOF2pnBzL91IU5PykfT2PvwkRdn-_PpFSgEKsqC9_eCJmZ6Xne2X1KZvPz7i2LC-sOnxepMw-xH218MQjm0JlZOjO5M3PozDTZEYuTMjvtKP4V-7_SK1hil6M</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Coutinho, Flavio L.</creator><creator>Morimoto, Carlos H.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20130201</creationdate><title>Improving Head Movement Tolerance of Cross-Ratio Based Eye Trackers</title><author>Coutinho, Flavio L. ; Morimoto, Carlos H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-ecfdccf6fdada9d3699beea7b2782aa31ddc19ee06e7600bb97397ca9b83e6bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>Calibration</topic><topic>Cameras</topic><topic>Chromium</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Cornea</topic><topic>Dynamical systems</topic><topic>Estimates</topic><topic>Eye movements</topic><topic>Geometry</topic><topic>Head motions</topic><topic>Head movement</topic><topic>Headgear</topic><topic>Image Processing and Computer Vision</topic><topic>Interactive computer systems</topic><topic>International</topic><topic>Iris</topic><topic>Methods</topic><topic>Motion control</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Reduction</topic><topic>Robustness</topic><topic>Studies</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coutinho, Flavio L.</creatorcontrib><creatorcontrib>Morimoto, Carlos H.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of computer vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coutinho, Flavio L.</au><au>Morimoto, Carlos H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Head Movement Tolerance of Cross-Ratio Based Eye Trackers</atitle><jtitle>International journal of computer vision</jtitle><stitle>Int J Comput Vis</stitle><date>2013-02-01</date><risdate>2013</risdate><volume>101</volume><issue>3</issue><spage>459</spage><epage>481</epage><pages>459-481</pages><issn>0920-5691</issn><eissn>1573-1405</eissn><abstract>When first introduced, the cross-ratio ( CR ) based remote eye tracking method offered many attractive features for natural human gaze-based interaction, such as simple camera setup, no user calibration, and invariance to head motion. However, due to many simplification assumptions, current CR -based methods are still sensitive to head movements. In this paper, we revisit the CR -based method and introduce two new extensions to improve the robustness of the method to head motion. The first method dynamically compensates for scale changes in the corneal reflection pattern, and the second method estimates true coplanar eye features so that the cross-ratio can be applied. We present real-time implementations of both systems, and compare the performance of these new methods using simulations and user experiments. Our results show a significant improvement in robustness to head motion and, for the user experiments in particular, an average reduction of up to 40 % in gaze estimation error was observed.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11263-012-0541-8</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-5691
ispartof International journal of computer vision, 2013-02, Vol.101 (3), p.459-481
issn 0920-5691
1573-1405
language eng
recordid cdi_proquest_miscellaneous_1671348833
source SpringerLink Journals - AutoHoldings
subjects Accuracy
Artificial Intelligence
Calibration
Cameras
Chromium
Computer Imaging
Computer Science
Computer simulation
Cornea
Dynamical systems
Estimates
Eye movements
Geometry
Head motions
Head movement
Headgear
Image Processing and Computer Vision
Interactive computer systems
International
Iris
Methods
Motion control
Pattern Recognition
Pattern Recognition and Graphics
Reduction
Robustness
Studies
Vision
title Improving Head Movement Tolerance of Cross-Ratio Based Eye Trackers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Head%20Movement%20Tolerance%20of%20Cross-Ratio%20Based%20Eye%20Trackers&rft.jtitle=International%20journal%20of%20computer%20vision&rft.au=Coutinho,%20Flavio%20L.&rft.date=2013-02-01&rft.volume=101&rft.issue=3&rft.spage=459&rft.epage=481&rft.pages=459-481&rft.issn=0920-5691&rft.eissn=1573-1405&rft_id=info:doi/10.1007/s11263-012-0541-8&rft_dat=%3Cgale_proqu%3EA337071155%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1285319340&rft_id=info:pmid/&rft_galeid=A337071155&rfr_iscdi=true