A single-crystal Raman and infrared study of the nonlinear optical crystal MBANP

Single‐crystal Raman and polycrystalline thin‐film infrared measurements have been obtained for the polar organic nonlinear optical material 2‐(α‐methylbenzylamino)‐5‐nitropyridine (MBANP). For comparison, thin‐film polycrystalline infrared measurements were also made on 2‐(α‐methylbenzylamino)‐3,5‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Raman spectroscopy 2011-05, Vol.42 (5), p.1174-1184
Hauptverfasser: Bailey, R. T., Cruickshank, F. R., Dines, T. J., Sherwood, N., Tedford, M. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1184
container_issue 5
container_start_page 1174
container_title Journal of Raman spectroscopy
container_volume 42
creator Bailey, R. T.
Cruickshank, F. R.
Dines, T. J.
Sherwood, N.
Tedford, M. C.
description Single‐crystal Raman and polycrystalline thin‐film infrared measurements have been obtained for the polar organic nonlinear optical material 2‐(α‐methylbenzylamino)‐5‐nitropyridine (MBANP). For comparison, thin‐film polycrystalline infrared measurements were also made on 2‐(α‐methylbenzylamino)‐3,5‐dinitropyridine (MBADNP). The long wavelength electronic absorption was measured in several solvents and as a thin solid film. The Raman spectra are dominated by three intense bands attributed to vibrations of the ring, the NO2 substituent, and the NH bond. The most intense scattering and absorption arose from the αbb component of the polarisability tensor. This implies that the most significant contribution to the transition polarisability arises from the electronic transition near 383 nm, polarised along the b‐axis of the crystal. The strongest bands in the infrared spectra are also associated with the same three bands, consistent with the predictions of the effective conjugation coordinate (ECC) theory, implying efficient electron–phonon coupling (or electronic delocalisation) in the conjugated system. DFT calculations of vibrational wavenumbers and eigenvectors were used to assign relevant vibrational features and to derive useful information about the molecular structure. This single‐crystal material is also a strong candidate for an efficient laser Raman converter with a large wavenumber shift of 3404 cm−1 and a high damage threshold. Copyright © 2010 John Wiley & Sons, Ltd. The Raman spectra of the optically nonlinear crystal MBANP were dominated by three intense bands attributed to vibrations of the pyridine ring, NO2 substituent, and NH bond. The largest contribution to the transition polarisability arose from the charge‐transfer transition near 383 nm polarised along the b‐axis of the crystal The strongest bands in the infrared spectrum were also associated with these transitions, implying efficient electron–phonon coupling.
doi_str_mv 10.1002/jrs.2803
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671347485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671347485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3643-9650f93f2c0c6ddeefc35c7db27bdca998a102f3e99b6fefa0e62c00c9f9ebfc3</originalsourceid><addsrcrecordid>eNp10F9PwjAUBfDGaCKiiR-hiS--DNt1a9dHJIoiIqLGx6Z0tzocHbYjyrd3BP9EE5_uy--c3ByEDinpUELik5kPnTgjbAu1KJEiStI03UYtwoSISJLxXbQXwowQIiWnLTTu4lC4pxIi41eh1iWe6Ll2WLscF8567SHHoV7mK1xZXD8DdpUrCwfa42pRF6ZJfCWvT7uj8T7asboMcPB52-jh_Oy-dxENb_qXve4wMownLJI8JVYyGxtieJ4DWMNSI_JpLKa50VJmmpLYMpByyi1YTYA3lhhpJUwb3EbHm96Fr16XEGo1L4KBstQOqmVQlAvKEpFkaUOP_tBZtfSu-U7ROGNxlsWC_RQaX4XgwaqFL-barxQlaj2taqZV62kbGm3oW1HC6l-nBpO7374INbx_e-1fFBdMpOpx1Fe9q-vbtDfuqwH7AD7ciZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283288273</pqid></control><display><type>article</type><title>A single-crystal Raman and infrared study of the nonlinear optical crystal MBANP</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bailey, R. T. ; Cruickshank, F. R. ; Dines, T. J. ; Sherwood, N. ; Tedford, M. C.</creator><creatorcontrib>Bailey, R. T. ; Cruickshank, F. R. ; Dines, T. J. ; Sherwood, N. ; Tedford, M. C.</creatorcontrib><description>Single‐crystal Raman and polycrystalline thin‐film infrared measurements have been obtained for the polar organic nonlinear optical material 2‐(α‐methylbenzylamino)‐5‐nitropyridine (MBANP). For comparison, thin‐film polycrystalline infrared measurements were also made on 2‐(α‐methylbenzylamino)‐3,5‐dinitropyridine (MBADNP). The long wavelength electronic absorption was measured in several solvents and as a thin solid film. The Raman spectra are dominated by three intense bands attributed to vibrations of the ring, the NO2 substituent, and the NH bond. The most intense scattering and absorption arose from the αbb component of the polarisability tensor. This implies that the most significant contribution to the transition polarisability arises from the electronic transition near 383 nm, polarised along the b‐axis of the crystal. The strongest bands in the infrared spectra are also associated with the same three bands, consistent with the predictions of the effective conjugation coordinate (ECC) theory, implying efficient electron–phonon coupling (or electronic delocalisation) in the conjugated system. DFT calculations of vibrational wavenumbers and eigenvectors were used to assign relevant vibrational features and to derive useful information about the molecular structure. This single‐crystal material is also a strong candidate for an efficient laser Raman converter with a large wavenumber shift of 3404 cm−1 and a high damage threshold. Copyright © 2010 John Wiley &amp; Sons, Ltd. The Raman spectra of the optically nonlinear crystal MBANP were dominated by three intense bands attributed to vibrations of the pyridine ring, NO2 substituent, and NH bond. The largest contribution to the transition polarisability arose from the charge‐transfer transition near 383 nm polarised along the b‐axis of the crystal The strongest bands in the infrared spectrum were also associated with these transitions, implying efficient electron–phonon coupling.</description><identifier>ISSN: 0377-0486</identifier><identifier>ISSN: 1097-4555</identifier><identifier>EISSN: 1097-4555</identifier><identifier>DOI: 10.1002/jrs.2803</identifier><identifier>CODEN: JRSPAF</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Band spectra ; Bands ; DFT calculations ; electron-phonon coupling ; Electronics ; Infrared ; Mathematical analysis ; MBANP ; Nonlinearity ; organic nonlinear ; Raman spectroscopy ; Single crystals ; Wavenumber</subject><ispartof>Journal of Raman spectroscopy, 2011-05, Vol.42 (5), p.1174-1184</ispartof><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3643-9650f93f2c0c6ddeefc35c7db27bdca998a102f3e99b6fefa0e62c00c9f9ebfc3</citedby><cites>FETCH-LOGICAL-c3643-9650f93f2c0c6ddeefc35c7db27bdca998a102f3e99b6fefa0e62c00c9f9ebfc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjrs.2803$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjrs.2803$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Bailey, R. T.</creatorcontrib><creatorcontrib>Cruickshank, F. R.</creatorcontrib><creatorcontrib>Dines, T. J.</creatorcontrib><creatorcontrib>Sherwood, N.</creatorcontrib><creatorcontrib>Tedford, M. C.</creatorcontrib><title>A single-crystal Raman and infrared study of the nonlinear optical crystal MBANP</title><title>Journal of Raman spectroscopy</title><addtitle>J. Raman Spectrosc</addtitle><description>Single‐crystal Raman and polycrystalline thin‐film infrared measurements have been obtained for the polar organic nonlinear optical material 2‐(α‐methylbenzylamino)‐5‐nitropyridine (MBANP). For comparison, thin‐film polycrystalline infrared measurements were also made on 2‐(α‐methylbenzylamino)‐3,5‐dinitropyridine (MBADNP). The long wavelength electronic absorption was measured in several solvents and as a thin solid film. The Raman spectra are dominated by three intense bands attributed to vibrations of the ring, the NO2 substituent, and the NH bond. The most intense scattering and absorption arose from the αbb component of the polarisability tensor. This implies that the most significant contribution to the transition polarisability arises from the electronic transition near 383 nm, polarised along the b‐axis of the crystal. The strongest bands in the infrared spectra are also associated with the same three bands, consistent with the predictions of the effective conjugation coordinate (ECC) theory, implying efficient electron–phonon coupling (or electronic delocalisation) in the conjugated system. DFT calculations of vibrational wavenumbers and eigenvectors were used to assign relevant vibrational features and to derive useful information about the molecular structure. This single‐crystal material is also a strong candidate for an efficient laser Raman converter with a large wavenumber shift of 3404 cm−1 and a high damage threshold. Copyright © 2010 John Wiley &amp; Sons, Ltd. The Raman spectra of the optically nonlinear crystal MBANP were dominated by three intense bands attributed to vibrations of the pyridine ring, NO2 substituent, and NH bond. The largest contribution to the transition polarisability arose from the charge‐transfer transition near 383 nm polarised along the b‐axis of the crystal The strongest bands in the infrared spectrum were also associated with these transitions, implying efficient electron–phonon coupling.</description><subject>Band spectra</subject><subject>Bands</subject><subject>DFT calculations</subject><subject>electron-phonon coupling</subject><subject>Electronics</subject><subject>Infrared</subject><subject>Mathematical analysis</subject><subject>MBANP</subject><subject>Nonlinearity</subject><subject>organic nonlinear</subject><subject>Raman spectroscopy</subject><subject>Single crystals</subject><subject>Wavenumber</subject><issn>0377-0486</issn><issn>1097-4555</issn><issn>1097-4555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp10F9PwjAUBfDGaCKiiR-hiS--DNt1a9dHJIoiIqLGx6Z0tzocHbYjyrd3BP9EE5_uy--c3ByEDinpUELik5kPnTgjbAu1KJEiStI03UYtwoSISJLxXbQXwowQIiWnLTTu4lC4pxIi41eh1iWe6Ll2WLscF8567SHHoV7mK1xZXD8DdpUrCwfa42pRF6ZJfCWvT7uj8T7asboMcPB52-jh_Oy-dxENb_qXve4wMownLJI8JVYyGxtieJ4DWMNSI_JpLKa50VJmmpLYMpByyi1YTYA3lhhpJUwb3EbHm96Fr16XEGo1L4KBstQOqmVQlAvKEpFkaUOP_tBZtfSu-U7ROGNxlsWC_RQaX4XgwaqFL-barxQlaj2taqZV62kbGm3oW1HC6l-nBpO7374INbx_e-1fFBdMpOpx1Fe9q-vbtDfuqwH7AD7ciZs</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Bailey, R. T.</creator><creator>Cruickshank, F. R.</creator><creator>Dines, T. J.</creator><creator>Sherwood, N.</creator><creator>Tedford, M. C.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201105</creationdate><title>A single-crystal Raman and infrared study of the nonlinear optical crystal MBANP</title><author>Bailey, R. T. ; Cruickshank, F. R. ; Dines, T. J. ; Sherwood, N. ; Tedford, M. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3643-9650f93f2c0c6ddeefc35c7db27bdca998a102f3e99b6fefa0e62c00c9f9ebfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Band spectra</topic><topic>Bands</topic><topic>DFT calculations</topic><topic>electron-phonon coupling</topic><topic>Electronics</topic><topic>Infrared</topic><topic>Mathematical analysis</topic><topic>MBANP</topic><topic>Nonlinearity</topic><topic>organic nonlinear</topic><topic>Raman spectroscopy</topic><topic>Single crystals</topic><topic>Wavenumber</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bailey, R. T.</creatorcontrib><creatorcontrib>Cruickshank, F. R.</creatorcontrib><creatorcontrib>Dines, T. J.</creatorcontrib><creatorcontrib>Sherwood, N.</creatorcontrib><creatorcontrib>Tedford, M. C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of Raman spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bailey, R. T.</au><au>Cruickshank, F. R.</au><au>Dines, T. J.</au><au>Sherwood, N.</au><au>Tedford, M. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A single-crystal Raman and infrared study of the nonlinear optical crystal MBANP</atitle><jtitle>Journal of Raman spectroscopy</jtitle><addtitle>J. Raman Spectrosc</addtitle><date>2011-05</date><risdate>2011</risdate><volume>42</volume><issue>5</issue><spage>1174</spage><epage>1184</epage><pages>1174-1184</pages><issn>0377-0486</issn><issn>1097-4555</issn><eissn>1097-4555</eissn><coden>JRSPAF</coden><abstract>Single‐crystal Raman and polycrystalline thin‐film infrared measurements have been obtained for the polar organic nonlinear optical material 2‐(α‐methylbenzylamino)‐5‐nitropyridine (MBANP). For comparison, thin‐film polycrystalline infrared measurements were also made on 2‐(α‐methylbenzylamino)‐3,5‐dinitropyridine (MBADNP). The long wavelength electronic absorption was measured in several solvents and as a thin solid film. The Raman spectra are dominated by three intense bands attributed to vibrations of the ring, the NO2 substituent, and the NH bond. The most intense scattering and absorption arose from the αbb component of the polarisability tensor. This implies that the most significant contribution to the transition polarisability arises from the electronic transition near 383 nm, polarised along the b‐axis of the crystal. The strongest bands in the infrared spectra are also associated with the same three bands, consistent with the predictions of the effective conjugation coordinate (ECC) theory, implying efficient electron–phonon coupling (or electronic delocalisation) in the conjugated system. DFT calculations of vibrational wavenumbers and eigenvectors were used to assign relevant vibrational features and to derive useful information about the molecular structure. This single‐crystal material is also a strong candidate for an efficient laser Raman converter with a large wavenumber shift of 3404 cm−1 and a high damage threshold. Copyright © 2010 John Wiley &amp; Sons, Ltd. The Raman spectra of the optically nonlinear crystal MBANP were dominated by three intense bands attributed to vibrations of the pyridine ring, NO2 substituent, and NH bond. The largest contribution to the transition polarisability arose from the charge‐transfer transition near 383 nm polarised along the b‐axis of the crystal The strongest bands in the infrared spectrum were also associated with these transitions, implying efficient electron–phonon coupling.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/jrs.2803</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-0486
ispartof Journal of Raman spectroscopy, 2011-05, Vol.42 (5), p.1174-1184
issn 0377-0486
1097-4555
1097-4555
language eng
recordid cdi_proquest_miscellaneous_1671347485
source Wiley Online Library Journals Frontfile Complete
subjects Band spectra
Bands
DFT calculations
electron-phonon coupling
Electronics
Infrared
Mathematical analysis
MBANP
Nonlinearity
organic nonlinear
Raman spectroscopy
Single crystals
Wavenumber
title A single-crystal Raman and infrared study of the nonlinear optical crystal MBANP
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20single-crystal%20Raman%20and%20infrared%20study%20of%20the%20nonlinear%20optical%20crystal%20MBANP&rft.jtitle=Journal%20of%20Raman%20spectroscopy&rft.au=Bailey,%20R.%20T.&rft.date=2011-05&rft.volume=42&rft.issue=5&rft.spage=1174&rft.epage=1184&rft.pages=1174-1184&rft.issn=0377-0486&rft.eissn=1097-4555&rft.coden=JRSPAF&rft_id=info:doi/10.1002/jrs.2803&rft_dat=%3Cproquest_cross%3E1671347485%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283288273&rft_id=info:pmid/&rfr_iscdi=true