A single-crystal Raman and infrared study of the nonlinear optical crystal MBANP
Single‐crystal Raman and polycrystalline thin‐film infrared measurements have been obtained for the polar organic nonlinear optical material 2‐(α‐methylbenzylamino)‐5‐nitropyridine (MBANP). For comparison, thin‐film polycrystalline infrared measurements were also made on 2‐(α‐methylbenzylamino)‐3,5‐...
Gespeichert in:
Veröffentlicht in: | Journal of Raman spectroscopy 2011-05, Vol.42 (5), p.1174-1184 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1184 |
---|---|
container_issue | 5 |
container_start_page | 1174 |
container_title | Journal of Raman spectroscopy |
container_volume | 42 |
creator | Bailey, R. T. Cruickshank, F. R. Dines, T. J. Sherwood, N. Tedford, M. C. |
description | Single‐crystal Raman and polycrystalline thin‐film infrared measurements have been obtained for the polar organic nonlinear optical material 2‐(α‐methylbenzylamino)‐5‐nitropyridine (MBANP). For comparison, thin‐film polycrystalline infrared measurements were also made on 2‐(α‐methylbenzylamino)‐3,5‐dinitropyridine (MBADNP). The long wavelength electronic absorption was measured in several solvents and as a thin solid film. The Raman spectra are dominated by three intense bands attributed to vibrations of the ring, the NO2 substituent, and the NH bond. The most intense scattering and absorption arose from the αbb component of the polarisability tensor. This implies that the most significant contribution to the transition polarisability arises from the electronic transition near 383 nm, polarised along the b‐axis of the crystal. The strongest bands in the infrared spectra are also associated with the same three bands, consistent with the predictions of the effective conjugation coordinate (ECC) theory, implying efficient electron–phonon coupling (or electronic delocalisation) in the conjugated system. DFT calculations of vibrational wavenumbers and eigenvectors were used to assign relevant vibrational features and to derive useful information about the molecular structure. This single‐crystal material is also a strong candidate for an efficient laser Raman converter with a large wavenumber shift of 3404 cm−1 and a high damage threshold. Copyright © 2010 John Wiley & Sons, Ltd.
The Raman spectra of the optically nonlinear crystal MBANP were dominated by three intense bands attributed to vibrations of the pyridine ring, NO2 substituent, and NH bond. The largest contribution to the transition polarisability arose from the charge‐transfer transition near 383 nm polarised along the b‐axis of the crystal The strongest bands in the infrared spectrum were also associated with these transitions, implying efficient electron–phonon coupling. |
doi_str_mv | 10.1002/jrs.2803 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671347485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671347485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3643-9650f93f2c0c6ddeefc35c7db27bdca998a102f3e99b6fefa0e62c00c9f9ebfc3</originalsourceid><addsrcrecordid>eNp10F9PwjAUBfDGaCKiiR-hiS--DNt1a9dHJIoiIqLGx6Z0tzocHbYjyrd3BP9EE5_uy--c3ByEDinpUELik5kPnTgjbAu1KJEiStI03UYtwoSISJLxXbQXwowQIiWnLTTu4lC4pxIi41eh1iWe6Ll2WLscF8567SHHoV7mK1xZXD8DdpUrCwfa42pRF6ZJfCWvT7uj8T7asboMcPB52-jh_Oy-dxENb_qXve4wMownLJI8JVYyGxtieJ4DWMNSI_JpLKa50VJmmpLYMpByyi1YTYA3lhhpJUwb3EbHm96Fr16XEGo1L4KBstQOqmVQlAvKEpFkaUOP_tBZtfSu-U7ROGNxlsWC_RQaX4XgwaqFL-barxQlaj2taqZV62kbGm3oW1HC6l-nBpO7374INbx_e-1fFBdMpOpx1Fe9q-vbtDfuqwH7AD7ciZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283288273</pqid></control><display><type>article</type><title>A single-crystal Raman and infrared study of the nonlinear optical crystal MBANP</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bailey, R. T. ; Cruickshank, F. R. ; Dines, T. J. ; Sherwood, N. ; Tedford, M. C.</creator><creatorcontrib>Bailey, R. T. ; Cruickshank, F. R. ; Dines, T. J. ; Sherwood, N. ; Tedford, M. C.</creatorcontrib><description>Single‐crystal Raman and polycrystalline thin‐film infrared measurements have been obtained for the polar organic nonlinear optical material 2‐(α‐methylbenzylamino)‐5‐nitropyridine (MBANP). For comparison, thin‐film polycrystalline infrared measurements were also made on 2‐(α‐methylbenzylamino)‐3,5‐dinitropyridine (MBADNP). The long wavelength electronic absorption was measured in several solvents and as a thin solid film. The Raman spectra are dominated by three intense bands attributed to vibrations of the ring, the NO2 substituent, and the NH bond. The most intense scattering and absorption arose from the αbb component of the polarisability tensor. This implies that the most significant contribution to the transition polarisability arises from the electronic transition near 383 nm, polarised along the b‐axis of the crystal. The strongest bands in the infrared spectra are also associated with the same three bands, consistent with the predictions of the effective conjugation coordinate (ECC) theory, implying efficient electron–phonon coupling (or electronic delocalisation) in the conjugated system. DFT calculations of vibrational wavenumbers and eigenvectors were used to assign relevant vibrational features and to derive useful information about the molecular structure. This single‐crystal material is also a strong candidate for an efficient laser Raman converter with a large wavenumber shift of 3404 cm−1 and a high damage threshold. Copyright © 2010 John Wiley & Sons, Ltd.
The Raman spectra of the optically nonlinear crystal MBANP were dominated by three intense bands attributed to vibrations of the pyridine ring, NO2 substituent, and NH bond. The largest contribution to the transition polarisability arose from the charge‐transfer transition near 383 nm polarised along the b‐axis of the crystal The strongest bands in the infrared spectrum were also associated with these transitions, implying efficient electron–phonon coupling.</description><identifier>ISSN: 0377-0486</identifier><identifier>ISSN: 1097-4555</identifier><identifier>EISSN: 1097-4555</identifier><identifier>DOI: 10.1002/jrs.2803</identifier><identifier>CODEN: JRSPAF</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Band spectra ; Bands ; DFT calculations ; electron-phonon coupling ; Electronics ; Infrared ; Mathematical analysis ; MBANP ; Nonlinearity ; organic nonlinear ; Raman spectroscopy ; Single crystals ; Wavenumber</subject><ispartof>Journal of Raman spectroscopy, 2011-05, Vol.42 (5), p.1174-1184</ispartof><rights>Copyright © 2010 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3643-9650f93f2c0c6ddeefc35c7db27bdca998a102f3e99b6fefa0e62c00c9f9ebfc3</citedby><cites>FETCH-LOGICAL-c3643-9650f93f2c0c6ddeefc35c7db27bdca998a102f3e99b6fefa0e62c00c9f9ebfc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjrs.2803$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjrs.2803$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Bailey, R. T.</creatorcontrib><creatorcontrib>Cruickshank, F. R.</creatorcontrib><creatorcontrib>Dines, T. J.</creatorcontrib><creatorcontrib>Sherwood, N.</creatorcontrib><creatorcontrib>Tedford, M. C.</creatorcontrib><title>A single-crystal Raman and infrared study of the nonlinear optical crystal MBANP</title><title>Journal of Raman spectroscopy</title><addtitle>J. Raman Spectrosc</addtitle><description>Single‐crystal Raman and polycrystalline thin‐film infrared measurements have been obtained for the polar organic nonlinear optical material 2‐(α‐methylbenzylamino)‐5‐nitropyridine (MBANP). For comparison, thin‐film polycrystalline infrared measurements were also made on 2‐(α‐methylbenzylamino)‐3,5‐dinitropyridine (MBADNP). The long wavelength electronic absorption was measured in several solvents and as a thin solid film. The Raman spectra are dominated by three intense bands attributed to vibrations of the ring, the NO2 substituent, and the NH bond. The most intense scattering and absorption arose from the αbb component of the polarisability tensor. This implies that the most significant contribution to the transition polarisability arises from the electronic transition near 383 nm, polarised along the b‐axis of the crystal. The strongest bands in the infrared spectra are also associated with the same three bands, consistent with the predictions of the effective conjugation coordinate (ECC) theory, implying efficient electron–phonon coupling (or electronic delocalisation) in the conjugated system. DFT calculations of vibrational wavenumbers and eigenvectors were used to assign relevant vibrational features and to derive useful information about the molecular structure. This single‐crystal material is also a strong candidate for an efficient laser Raman converter with a large wavenumber shift of 3404 cm−1 and a high damage threshold. Copyright © 2010 John Wiley & Sons, Ltd.
The Raman spectra of the optically nonlinear crystal MBANP were dominated by three intense bands attributed to vibrations of the pyridine ring, NO2 substituent, and NH bond. The largest contribution to the transition polarisability arose from the charge‐transfer transition near 383 nm polarised along the b‐axis of the crystal The strongest bands in the infrared spectrum were also associated with these transitions, implying efficient electron–phonon coupling.</description><subject>Band spectra</subject><subject>Bands</subject><subject>DFT calculations</subject><subject>electron-phonon coupling</subject><subject>Electronics</subject><subject>Infrared</subject><subject>Mathematical analysis</subject><subject>MBANP</subject><subject>Nonlinearity</subject><subject>organic nonlinear</subject><subject>Raman spectroscopy</subject><subject>Single crystals</subject><subject>Wavenumber</subject><issn>0377-0486</issn><issn>1097-4555</issn><issn>1097-4555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp10F9PwjAUBfDGaCKiiR-hiS--DNt1a9dHJIoiIqLGx6Z0tzocHbYjyrd3BP9EE5_uy--c3ByEDinpUELik5kPnTgjbAu1KJEiStI03UYtwoSISJLxXbQXwowQIiWnLTTu4lC4pxIi41eh1iWe6Ll2WLscF8567SHHoV7mK1xZXD8DdpUrCwfa42pRF6ZJfCWvT7uj8T7asboMcPB52-jh_Oy-dxENb_qXve4wMownLJI8JVYyGxtieJ4DWMNSI_JpLKa50VJmmpLYMpByyi1YTYA3lhhpJUwb3EbHm96Fr16XEGo1L4KBstQOqmVQlAvKEpFkaUOP_tBZtfSu-U7ROGNxlsWC_RQaX4XgwaqFL-barxQlaj2taqZV62kbGm3oW1HC6l-nBpO7374INbx_e-1fFBdMpOpx1Fe9q-vbtDfuqwH7AD7ciZs</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Bailey, R. T.</creator><creator>Cruickshank, F. R.</creator><creator>Dines, T. J.</creator><creator>Sherwood, N.</creator><creator>Tedford, M. C.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201105</creationdate><title>A single-crystal Raman and infrared study of the nonlinear optical crystal MBANP</title><author>Bailey, R. T. ; Cruickshank, F. R. ; Dines, T. J. ; Sherwood, N. ; Tedford, M. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3643-9650f93f2c0c6ddeefc35c7db27bdca998a102f3e99b6fefa0e62c00c9f9ebfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Band spectra</topic><topic>Bands</topic><topic>DFT calculations</topic><topic>electron-phonon coupling</topic><topic>Electronics</topic><topic>Infrared</topic><topic>Mathematical analysis</topic><topic>MBANP</topic><topic>Nonlinearity</topic><topic>organic nonlinear</topic><topic>Raman spectroscopy</topic><topic>Single crystals</topic><topic>Wavenumber</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bailey, R. T.</creatorcontrib><creatorcontrib>Cruickshank, F. R.</creatorcontrib><creatorcontrib>Dines, T. J.</creatorcontrib><creatorcontrib>Sherwood, N.</creatorcontrib><creatorcontrib>Tedford, M. C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of Raman spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bailey, R. T.</au><au>Cruickshank, F. R.</au><au>Dines, T. J.</au><au>Sherwood, N.</au><au>Tedford, M. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A single-crystal Raman and infrared study of the nonlinear optical crystal MBANP</atitle><jtitle>Journal of Raman spectroscopy</jtitle><addtitle>J. Raman Spectrosc</addtitle><date>2011-05</date><risdate>2011</risdate><volume>42</volume><issue>5</issue><spage>1174</spage><epage>1184</epage><pages>1174-1184</pages><issn>0377-0486</issn><issn>1097-4555</issn><eissn>1097-4555</eissn><coden>JRSPAF</coden><abstract>Single‐crystal Raman and polycrystalline thin‐film infrared measurements have been obtained for the polar organic nonlinear optical material 2‐(α‐methylbenzylamino)‐5‐nitropyridine (MBANP). For comparison, thin‐film polycrystalline infrared measurements were also made on 2‐(α‐methylbenzylamino)‐3,5‐dinitropyridine (MBADNP). The long wavelength electronic absorption was measured in several solvents and as a thin solid film. The Raman spectra are dominated by three intense bands attributed to vibrations of the ring, the NO2 substituent, and the NH bond. The most intense scattering and absorption arose from the αbb component of the polarisability tensor. This implies that the most significant contribution to the transition polarisability arises from the electronic transition near 383 nm, polarised along the b‐axis of the crystal. The strongest bands in the infrared spectra are also associated with the same three bands, consistent with the predictions of the effective conjugation coordinate (ECC) theory, implying efficient electron–phonon coupling (or electronic delocalisation) in the conjugated system. DFT calculations of vibrational wavenumbers and eigenvectors were used to assign relevant vibrational features and to derive useful information about the molecular structure. This single‐crystal material is also a strong candidate for an efficient laser Raman converter with a large wavenumber shift of 3404 cm−1 and a high damage threshold. Copyright © 2010 John Wiley & Sons, Ltd.
The Raman spectra of the optically nonlinear crystal MBANP were dominated by three intense bands attributed to vibrations of the pyridine ring, NO2 substituent, and NH bond. The largest contribution to the transition polarisability arose from the charge‐transfer transition near 383 nm polarised along the b‐axis of the crystal The strongest bands in the infrared spectrum were also associated with these transitions, implying efficient electron–phonon coupling.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/jrs.2803</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0486 |
ispartof | Journal of Raman spectroscopy, 2011-05, Vol.42 (5), p.1174-1184 |
issn | 0377-0486 1097-4555 1097-4555 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671347485 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Band spectra Bands DFT calculations electron-phonon coupling Electronics Infrared Mathematical analysis MBANP Nonlinearity organic nonlinear Raman spectroscopy Single crystals Wavenumber |
title | A single-crystal Raman and infrared study of the nonlinear optical crystal MBANP |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20single-crystal%20Raman%20and%20infrared%20study%20of%20the%20nonlinear%20optical%20crystal%20MBANP&rft.jtitle=Journal%20of%20Raman%20spectroscopy&rft.au=Bailey,%20R.%20T.&rft.date=2011-05&rft.volume=42&rft.issue=5&rft.spage=1174&rft.epage=1184&rft.pages=1174-1184&rft.issn=0377-0486&rft.eissn=1097-4555&rft.coden=JRSPAF&rft_id=info:doi/10.1002/jrs.2803&rft_dat=%3Cproquest_cross%3E1671347485%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283288273&rft_id=info:pmid/&rfr_iscdi=true |