Heat transfer improvement of Wood's alloy using compressed expanded natural graphite for thermal energy storage

As a phase change material, Wood's alloy is infiltrated into the compressed expanded natural graphite (CENG) in an attempt to improve the thermal conductivity of the alloy. The thermal conductivity of the CENG/Wood's alloy composite depends on the bulk density of the CENG. Thermal conducti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2012-05, Vol.100, p.263-267
Hauptverfasser: Zhong, Yajuan, Guo, Quangui, Li, Lei, Wang, Xianglei, Song, Jinliang, Xiao, Kesong, Huang, Fuqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 267
container_issue
container_start_page 263
container_title Solar energy materials and solar cells
container_volume 100
creator Zhong, Yajuan
Guo, Quangui
Li, Lei
Wang, Xianglei
Song, Jinliang
Xiao, Kesong
Huang, Fuqiang
description As a phase change material, Wood's alloy is infiltrated into the compressed expanded natural graphite (CENG) in an attempt to improve the thermal conductivity of the alloy. The thermal conductivity of the CENG/Wood's alloy composite depends on the bulk density of the CENG. Thermal conductivity of the composites can be 2.8–5.8 times than that of the Wood's alloy. On the other hand, the latent heat of the composites ranges from 29.27 to 34.20J/g. The graphite does not undergo a phase change, so the latent heat would be expected to be linear with the amount of Wood's alloy. The composites have a potential use in the heat sink of the electronic device. ► Compressed expanded natural graphite (CENG) improved the thermal performance of Wood's alloy. ► Thermal conductivity of the CENG/Wood's alloy composites is ∼5 times than that of the Wood's alloy. ► The latent heat would be expected to be linear with the amount of Wood's alloy. ► The composites have a potential use in the heat sink of the electronic device.
doi_str_mv 10.1016/j.solmat.2012.01.033
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671347202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024812000499</els_id><sourcerecordid>1671347202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-a8cc3a772d0e79b04e0125a606ae0764bdc992421c16df2d564f119b7b44176f3</originalsourceid><addsrcrecordid>eNqFkUFrVDEQgINYcG39Bx5yEb281yQvm7xcBClqC4VeFI9hNplss7z3sibZ4v57s2zpUU8zDN_MMPMR8p6znjOurnd9SdMMtReMi57xng3DK7LiozbdMJjxNVkxI3THhBzfkLel7BhjQg1yRdItQqU1w1ICZhrnfU5POONSaQr0V0r-Y6EwTelIDyUuW-pSQ7AU9BT_7GHxLVmgHjJMdJth_xgr0pAyrY-Y51bEBfP2SEtNGbZ4RS4CTAXfPcdL8vPb1x83t939w_e7my_3nZNM1A5G5wbQWniG2myYxHbZGhRTgEwrufHOGCEFd1z5IPxaycC52eiNlFyrMFyST-e57Z7fByzVzrE4nCZYMB2K5UrzQWrBxP9RJsS4NoafUHlGXU6lZAx2n-MM-dgge1Jhd_aswp5UWMZtU9HaPjxvgOJgCu3bLpaXXrHWTYY4jf985rB95ilitsVFXBz6mNFV61P896K_xUSiFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022859912</pqid></control><display><type>article</type><title>Heat transfer improvement of Wood's alloy using compressed expanded natural graphite for thermal energy storage</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhong, Yajuan ; Guo, Quangui ; Li, Lei ; Wang, Xianglei ; Song, Jinliang ; Xiao, Kesong ; Huang, Fuqiang</creator><creatorcontrib>Zhong, Yajuan ; Guo, Quangui ; Li, Lei ; Wang, Xianglei ; Song, Jinliang ; Xiao, Kesong ; Huang, Fuqiang</creatorcontrib><description>As a phase change material, Wood's alloy is infiltrated into the compressed expanded natural graphite (CENG) in an attempt to improve the thermal conductivity of the alloy. The thermal conductivity of the CENG/Wood's alloy composite depends on the bulk density of the CENG. Thermal conductivity of the composites can be 2.8–5.8 times than that of the Wood's alloy. On the other hand, the latent heat of the composites ranges from 29.27 to 34.20J/g. The graphite does not undergo a phase change, so the latent heat would be expected to be linear with the amount of Wood's alloy. The composites have a potential use in the heat sink of the electronic device. ► Compressed expanded natural graphite (CENG) improved the thermal performance of Wood's alloy. ► Thermal conductivity of the CENG/Wood's alloy composites is ∼5 times than that of the Wood's alloy. ► The latent heat would be expected to be linear with the amount of Wood's alloy. ► The composites have a potential use in the heat sink of the electronic device.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2012.01.033</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Compressed ; Compressed expanded natural graphite (CENG) ; Electrical engineering. Electrical power engineering ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Graphite ; Heat transfer ; Latent heat ; Materials ; Phase change ; Phase change material (PCM) ; Solar energy ; Theoretical studies. Data and constants. Metering ; Thermal conductivity ; Transport and storage of energy ; Wood ; Wood's alloy</subject><ispartof>Solar energy materials and solar cells, 2012-05, Vol.100, p.263-267</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-a8cc3a772d0e79b04e0125a606ae0764bdc992421c16df2d564f119b7b44176f3</citedby><cites>FETCH-LOGICAL-c402t-a8cc3a772d0e79b04e0125a606ae0764bdc992421c16df2d564f119b7b44176f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solmat.2012.01.033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25726322$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhong, Yajuan</creatorcontrib><creatorcontrib>Guo, Quangui</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Wang, Xianglei</creatorcontrib><creatorcontrib>Song, Jinliang</creatorcontrib><creatorcontrib>Xiao, Kesong</creatorcontrib><creatorcontrib>Huang, Fuqiang</creatorcontrib><title>Heat transfer improvement of Wood's alloy using compressed expanded natural graphite for thermal energy storage</title><title>Solar energy materials and solar cells</title><description>As a phase change material, Wood's alloy is infiltrated into the compressed expanded natural graphite (CENG) in an attempt to improve the thermal conductivity of the alloy. The thermal conductivity of the CENG/Wood's alloy composite depends on the bulk density of the CENG. Thermal conductivity of the composites can be 2.8–5.8 times than that of the Wood's alloy. On the other hand, the latent heat of the composites ranges from 29.27 to 34.20J/g. The graphite does not undergo a phase change, so the latent heat would be expected to be linear with the amount of Wood's alloy. The composites have a potential use in the heat sink of the electronic device. ► Compressed expanded natural graphite (CENG) improved the thermal performance of Wood's alloy. ► Thermal conductivity of the CENG/Wood's alloy composites is ∼5 times than that of the Wood's alloy. ► The latent heat would be expected to be linear with the amount of Wood's alloy. ► The composites have a potential use in the heat sink of the electronic device.</description><subject>Applied sciences</subject><subject>Compressed</subject><subject>Compressed expanded natural graphite (CENG)</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Graphite</subject><subject>Heat transfer</subject><subject>Latent heat</subject><subject>Materials</subject><subject>Phase change</subject><subject>Phase change material (PCM)</subject><subject>Solar energy</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal conductivity</subject><subject>Transport and storage of energy</subject><subject>Wood</subject><subject>Wood's alloy</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkUFrVDEQgINYcG39Bx5yEb281yQvm7xcBClqC4VeFI9hNplss7z3sibZ4v57s2zpUU8zDN_MMPMR8p6znjOurnd9SdMMtReMi57xng3DK7LiozbdMJjxNVkxI3THhBzfkLel7BhjQg1yRdItQqU1w1ICZhrnfU5POONSaQr0V0r-Y6EwTelIDyUuW-pSQ7AU9BT_7GHxLVmgHjJMdJth_xgr0pAyrY-Y51bEBfP2SEtNGbZ4RS4CTAXfPcdL8vPb1x83t939w_e7my_3nZNM1A5G5wbQWniG2myYxHbZGhRTgEwrufHOGCEFd1z5IPxaycC52eiNlFyrMFyST-e57Z7fByzVzrE4nCZYMB2K5UrzQWrBxP9RJsS4NoafUHlGXU6lZAx2n-MM-dgge1Jhd_aswp5UWMZtU9HaPjxvgOJgCu3bLpaXXrHWTYY4jf985rB95ilitsVFXBz6mNFV61P896K_xUSiFA</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Zhong, Yajuan</creator><creator>Guo, Quangui</creator><creator>Li, Lei</creator><creator>Wang, Xianglei</creator><creator>Song, Jinliang</creator><creator>Xiao, Kesong</creator><creator>Huang, Fuqiang</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20120501</creationdate><title>Heat transfer improvement of Wood's alloy using compressed expanded natural graphite for thermal energy storage</title><author>Zhong, Yajuan ; Guo, Quangui ; Li, Lei ; Wang, Xianglei ; Song, Jinliang ; Xiao, Kesong ; Huang, Fuqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-a8cc3a772d0e79b04e0125a606ae0764bdc992421c16df2d564f119b7b44176f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Compressed</topic><topic>Compressed expanded natural graphite (CENG)</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Graphite</topic><topic>Heat transfer</topic><topic>Latent heat</topic><topic>Materials</topic><topic>Phase change</topic><topic>Phase change material (PCM)</topic><topic>Solar energy</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal conductivity</topic><topic>Transport and storage of energy</topic><topic>Wood</topic><topic>Wood's alloy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Yajuan</creatorcontrib><creatorcontrib>Guo, Quangui</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Wang, Xianglei</creatorcontrib><creatorcontrib>Song, Jinliang</creatorcontrib><creatorcontrib>Xiao, Kesong</creatorcontrib><creatorcontrib>Huang, Fuqiang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Yajuan</au><au>Guo, Quangui</au><au>Li, Lei</au><au>Wang, Xianglei</au><au>Song, Jinliang</au><au>Xiao, Kesong</au><au>Huang, Fuqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat transfer improvement of Wood's alloy using compressed expanded natural graphite for thermal energy storage</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2012-05-01</date><risdate>2012</risdate><volume>100</volume><spage>263</spage><epage>267</epage><pages>263-267</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>As a phase change material, Wood's alloy is infiltrated into the compressed expanded natural graphite (CENG) in an attempt to improve the thermal conductivity of the alloy. The thermal conductivity of the CENG/Wood's alloy composite depends on the bulk density of the CENG. Thermal conductivity of the composites can be 2.8–5.8 times than that of the Wood's alloy. On the other hand, the latent heat of the composites ranges from 29.27 to 34.20J/g. The graphite does not undergo a phase change, so the latent heat would be expected to be linear with the amount of Wood's alloy. The composites have a potential use in the heat sink of the electronic device. ► Compressed expanded natural graphite (CENG) improved the thermal performance of Wood's alloy. ► Thermal conductivity of the CENG/Wood's alloy composites is ∼5 times than that of the Wood's alloy. ► The latent heat would be expected to be linear with the amount of Wood's alloy. ► The composites have a potential use in the heat sink of the electronic device.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2012.01.033</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2012-05, Vol.100, p.263-267
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_miscellaneous_1671347202
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Compressed
Compressed expanded natural graphite (CENG)
Electrical engineering. Electrical power engineering
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Graphite
Heat transfer
Latent heat
Materials
Phase change
Phase change material (PCM)
Solar energy
Theoretical studies. Data and constants. Metering
Thermal conductivity
Transport and storage of energy
Wood
Wood's alloy
title Heat transfer improvement of Wood's alloy using compressed expanded natural graphite for thermal energy storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A42%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20transfer%20improvement%20of%20Wood's%20alloy%20using%20compressed%20expanded%20natural%20graphite%20for%20thermal%20energy%20storage&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Zhong,%20Yajuan&rft.date=2012-05-01&rft.volume=100&rft.spage=263&rft.epage=267&rft.pages=263-267&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2012.01.033&rft_dat=%3Cproquest_cross%3E1671347202%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022859912&rft_id=info:pmid/&rft_els_id=S0927024812000499&rfr_iscdi=true