A multi-scale spectral stochastic method for homogenization of multi-phase periodic composites with random material properties

In this work a spectral stochastic computational scheme is proposed that links the global properties of multi‐phase periodic composites to the geometry and random material properties of their microstructural components. To propagate the uncertainties associated with the material properties to the mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2010-07, Vol.83 (1), p.59-90
Hauptverfasser: Tootkaboni, M., Graham-Brady, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 90
container_issue 1
container_start_page 59
container_title International journal for numerical methods in engineering
container_volume 83
creator Tootkaboni, M.
Graham-Brady, L.
description In this work a spectral stochastic computational scheme is proposed that links the global properties of multi‐phase periodic composites to the geometry and random material properties of their microstructural components. To propagate the uncertainties associated with the material properties to the microstructural response the scheme benefits from a combination of homogenization theory built into a finite element framework and the spectral representation of uncertainty based on Hermite Chaos where a probabilistic characterization of the solutions to a set of local problems defined on the period cell is first sought. A full stochastic description of the global (effective) properties is then obtained by averaging the solutions to the forgoing set of local problems over the unit cell. A representative subset of results is compared with the results obtained using Monte Carlo simulation to demonstrate the accuracy of the proposed procedure. Copyright © 2010 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.2829
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671344731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671344731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3669-a31505996e5f1539dff9f85aab3a8440a0314a9d80dff8d0a22990d89781b1933</originalsourceid><addsrcrecordid>eNp10LtuFDEUBmALgcQSkHgEN0g0E3yZi11GIQmXzdKAKK0TzzFrGI8H26sQCp4drzIKFZWL853f9k_IS85OOWPizRzwVCihH5ENZ3pomGDDY7KpI910WvGn5FnO3xnjvGNyQ_6c0XCYim-yhQlpXtCWBBPNJdo95OItDVj2caQuJrqPIX7D2f-G4uNMo1uXl0qRLph8HOuGjWGJ2RfM9NaXPU0wjzHQAKWKGr6kWG3xmJ-TJw6mjC_W84R8ubz4fP6u2X66en9-tm2s7HvdgKyv7bTusXO8k3p0TjvVAdxIUG3LgEnegh4VqxM1MhBCazYqPSh-w7WUJ-T1fW69-ucBczHBZ4vTBDPGQza8H7hs20Hyf9SmmHNCZ5bkA6Q7w5k5VmxqxeZYcaWv1lQ41ufqP63PD14IpTkTXXXNvbv1E979N8_sri_W3NX7XPDXg4f0w_SDHDrzdXdlttcfd2_Fh53R8i_q55tp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671344731</pqid></control><display><type>article</type><title>A multi-scale spectral stochastic method for homogenization of multi-phase periodic composites with random material properties</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tootkaboni, M. ; Graham-Brady, L.</creator><creatorcontrib>Tootkaboni, M. ; Graham-Brady, L.</creatorcontrib><description>In this work a spectral stochastic computational scheme is proposed that links the global properties of multi‐phase periodic composites to the geometry and random material properties of their microstructural components. To propagate the uncertainties associated with the material properties to the microstructural response the scheme benefits from a combination of homogenization theory built into a finite element framework and the spectral representation of uncertainty based on Hermite Chaos where a probabilistic characterization of the solutions to a set of local problems defined on the period cell is first sought. A full stochastic description of the global (effective) properties is then obtained by averaging the solutions to the forgoing set of local problems over the unit cell. A representative subset of results is compared with the results obtained using Monte Carlo simulation to demonstrate the accuracy of the proposed procedure. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>ISSN: 1097-0207</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.2829</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Computer simulation ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Hermite Chaos expansion ; homogenization theory ; Homogenizing ; Karhunen-Loeve transform ; Mathematical models ; Mathematics ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Microstructure ; Monte Carlo methods ; multi-phase composites ; Numerical analysis. Scientific computation ; Physics ; Sciences and techniques of general use ; Solid mechanics ; solids ; Spectra ; stochastic Galerkin ; Stochasticity ; Structural and continuum mechanics ; Uncertainty</subject><ispartof>International journal for numerical methods in engineering, 2010-07, Vol.83 (1), p.59-90</ispartof><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3669-a31505996e5f1539dff9f85aab3a8440a0314a9d80dff8d0a22990d89781b1933</citedby><cites>FETCH-LOGICAL-c3669-a31505996e5f1539dff9f85aab3a8440a0314a9d80dff8d0a22990d89781b1933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.2829$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.2829$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22891025$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tootkaboni, M.</creatorcontrib><creatorcontrib>Graham-Brady, L.</creatorcontrib><title>A multi-scale spectral stochastic method for homogenization of multi-phase periodic composites with random material properties</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>In this work a spectral stochastic computational scheme is proposed that links the global properties of multi‐phase periodic composites to the geometry and random material properties of their microstructural components. To propagate the uncertainties associated with the material properties to the microstructural response the scheme benefits from a combination of homogenization theory built into a finite element framework and the spectral representation of uncertainty based on Hermite Chaos where a probabilistic characterization of the solutions to a set of local problems defined on the period cell is first sought. A full stochastic description of the global (effective) properties is then obtained by averaging the solutions to the forgoing set of local problems over the unit cell. A representative subset of results is compared with the results obtained using Monte Carlo simulation to demonstrate the accuracy of the proposed procedure. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><subject>Computer simulation</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hermite Chaos expansion</subject><subject>homogenization theory</subject><subject>Homogenizing</subject><subject>Karhunen-Loeve transform</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Microstructure</subject><subject>Monte Carlo methods</subject><subject>multi-phase composites</subject><subject>Numerical analysis. Scientific computation</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><subject>Solid mechanics</subject><subject>solids</subject><subject>Spectra</subject><subject>stochastic Galerkin</subject><subject>Stochasticity</subject><subject>Structural and continuum mechanics</subject><subject>Uncertainty</subject><issn>0029-5981</issn><issn>1097-0207</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp10LtuFDEUBmALgcQSkHgEN0g0E3yZi11GIQmXzdKAKK0TzzFrGI8H26sQCp4drzIKFZWL853f9k_IS85OOWPizRzwVCihH5ENZ3pomGDDY7KpI910WvGn5FnO3xnjvGNyQ_6c0XCYim-yhQlpXtCWBBPNJdo95OItDVj2caQuJrqPIX7D2f-G4uNMo1uXl0qRLph8HOuGjWGJ2RfM9NaXPU0wjzHQAKWKGr6kWG3xmJ-TJw6mjC_W84R8ubz4fP6u2X66en9-tm2s7HvdgKyv7bTusXO8k3p0TjvVAdxIUG3LgEnegh4VqxM1MhBCazYqPSh-w7WUJ-T1fW69-ucBczHBZ4vTBDPGQza8H7hs20Hyf9SmmHNCZ5bkA6Q7w5k5VmxqxeZYcaWv1lQ41ufqP63PD14IpTkTXXXNvbv1E979N8_sri_W3NX7XPDXg4f0w_SDHDrzdXdlttcfd2_Fh53R8i_q55tp</recordid><startdate>20100702</startdate><enddate>20100702</enddate><creator>Tootkaboni, M.</creator><creator>Graham-Brady, L.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100702</creationdate><title>A multi-scale spectral stochastic method for homogenization of multi-phase periodic composites with random material properties</title><author>Tootkaboni, M. ; Graham-Brady, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3669-a31505996e5f1539dff9f85aab3a8440a0314a9d80dff8d0a22990d89781b1933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer simulation</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hermite Chaos expansion</topic><topic>homogenization theory</topic><topic>Homogenizing</topic><topic>Karhunen-Loeve transform</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Microstructure</topic><topic>Monte Carlo methods</topic><topic>multi-phase composites</topic><topic>Numerical analysis. Scientific computation</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><topic>Solid mechanics</topic><topic>solids</topic><topic>Spectra</topic><topic>stochastic Galerkin</topic><topic>Stochasticity</topic><topic>Structural and continuum mechanics</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tootkaboni, M.</creatorcontrib><creatorcontrib>Graham-Brady, L.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tootkaboni, M.</au><au>Graham-Brady, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-scale spectral stochastic method for homogenization of multi-phase periodic composites with random material properties</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2010-07-02</date><risdate>2010</risdate><volume>83</volume><issue>1</issue><spage>59</spage><epage>90</epage><pages>59-90</pages><issn>0029-5981</issn><issn>1097-0207</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>In this work a spectral stochastic computational scheme is proposed that links the global properties of multi‐phase periodic composites to the geometry and random material properties of their microstructural components. To propagate the uncertainties associated with the material properties to the microstructural response the scheme benefits from a combination of homogenization theory built into a finite element framework and the spectral representation of uncertainty based on Hermite Chaos where a probabilistic characterization of the solutions to a set of local problems defined on the period cell is first sought. A full stochastic description of the global (effective) properties is then obtained by averaging the solutions to the forgoing set of local problems over the unit cell. A representative subset of results is compared with the results obtained using Monte Carlo simulation to demonstrate the accuracy of the proposed procedure. Copyright © 2010 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nme.2829</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2010-07, Vol.83 (1), p.59-90
issn 0029-5981
1097-0207
1097-0207
language eng
recordid cdi_proquest_miscellaneous_1671344731
source Wiley Online Library Journals Frontfile Complete
subjects Computer simulation
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Hermite Chaos expansion
homogenization theory
Homogenizing
Karhunen-Loeve transform
Mathematical models
Mathematics
Methods of scientific computing (including symbolic computation, algebraic computation)
Microstructure
Monte Carlo methods
multi-phase composites
Numerical analysis. Scientific computation
Physics
Sciences and techniques of general use
Solid mechanics
solids
Spectra
stochastic Galerkin
Stochasticity
Structural and continuum mechanics
Uncertainty
title A multi-scale spectral stochastic method for homogenization of multi-phase periodic composites with random material properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T10%3A46%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-scale%20spectral%20stochastic%20method%20for%20homogenization%20of%20multi-phase%20periodic%20composites%20with%20random%20material%20properties&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Tootkaboni,%20M.&rft.date=2010-07-02&rft.volume=83&rft.issue=1&rft.spage=59&rft.epage=90&rft.pages=59-90&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.2829&rft_dat=%3Cproquest_cross%3E1671344731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671344731&rft_id=info:pmid/&rfr_iscdi=true