Fuzzy pole placement based on piecewise Lyapunov functions
This paper presents a controller design method for fuzzy dynamic systems based on piecewise Lyapunov functions with constraints on the closed‐loop pole location. The main idea is to use switched controllers to locate the poles of the system to obtain a satisfactory transient response. It is shown th...
Gespeichert in:
Veröffentlicht in: | International journal of robust and nonlinear control 2010-03, Vol.20 (5), p.571-578 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 578 |
---|---|
container_issue | 5 |
container_start_page | 571 |
container_title | International journal of robust and nonlinear control |
container_volume | 20 |
creator | Tognetti, Eduardo S. Oliveira, Vilma A. |
description | This paper presents a controller design method for fuzzy dynamic systems based on piecewise Lyapunov functions with constraints on the closed‐loop pole location. The main idea is to use switched controllers to locate the poles of the system to obtain a satisfactory transient response. It is shown that the global fuzzy system satisfies the requirements for the design and that the control law can be obtained by solving a set of linear matrix inequalities, which can be efficiently solved with commercially available softwares. An example is given to illustrate the application of the proposed method. Copyright © 2009 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/rnc.1454 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671344205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671344205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3364-c2ab8763d5120676556b4ff921b4f6bb944fb99205733e3d3287584b19183f363</originalsourceid><addsrcrecordid>eNp1kFFLwzAUhYMoOKfgT-ijL51Jbpo2vumwUxkTZOJjSLNbiHZtbVpn9-vtmCg--HQO3I_D5SPknNEJo5RfNqWdMBGJAzJiVKmQcVCHuy5UmCgOx-TE-1dKhxsXI3KVdtttH9RVgUFdGItrLNsgMx5XQVUGtUOLG-cxmPem7srqI8i70rauKv0pOcpN4fHsO8fkOb1dTu_C-ePsfno9Dy2AFKHlJktiCauIcSpjGUUyE3muOBtCZpkSIs-GZ2gUAyCsgCdxlIiMKZZADhLG5GK_WzfVe4e-1WvnLRaFKbHqvGYyZiDEMPCL2qbyvsFc141bm6bXjOqdHj3o0Ts9Axru0Y0rsP-X00-L6V_e-RY_f3jTvGkZQxzpl8VML5RM5XJ2ox_gCz7Sc4s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671344205</pqid></control><display><type>article</type><title>Fuzzy pole placement based on piecewise Lyapunov functions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tognetti, Eduardo S. ; Oliveira, Vilma A.</creator><creatorcontrib>Tognetti, Eduardo S. ; Oliveira, Vilma A.</creatorcontrib><description>This paper presents a controller design method for fuzzy dynamic systems based on piecewise Lyapunov functions with constraints on the closed‐loop pole location. The main idea is to use switched controllers to locate the poles of the system to obtain a satisfactory transient response. It is shown that the global fuzzy system satisfies the requirements for the design and that the control law can be obtained by solving a set of linear matrix inequalities, which can be efficiently solved with commercially available softwares. An example is given to illustrate the application of the proposed method. Copyright © 2009 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1049-8923</identifier><identifier>ISSN: 1099-1239</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.1454</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Control systems ; Design engineering ; Dynamical systems ; Fuzzy ; Fuzzy logic ; Fuzzy set theory ; fuzzy systems ; linear matrix inequalities ; Nonlinear dynamics ; piecewise linear systems ; piecewise Lyapunov functions ; pole placement ; Poles</subject><ispartof>International journal of robust and nonlinear control, 2010-03, Vol.20 (5), p.571-578</ispartof><rights>Copyright © 2009 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3364-c2ab8763d5120676556b4ff921b4f6bb944fb99205733e3d3287584b19183f363</citedby><cites>FETCH-LOGICAL-c3364-c2ab8763d5120676556b4ff921b4f6bb944fb99205733e3d3287584b19183f363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.1454$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.1454$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Tognetti, Eduardo S.</creatorcontrib><creatorcontrib>Oliveira, Vilma A.</creatorcontrib><title>Fuzzy pole placement based on piecewise Lyapunov functions</title><title>International journal of robust and nonlinear control</title><addtitle>Int. J. Robust Nonlinear Control</addtitle><description>This paper presents a controller design method for fuzzy dynamic systems based on piecewise Lyapunov functions with constraints on the closed‐loop pole location. The main idea is to use switched controllers to locate the poles of the system to obtain a satisfactory transient response. It is shown that the global fuzzy system satisfies the requirements for the design and that the control law can be obtained by solving a set of linear matrix inequalities, which can be efficiently solved with commercially available softwares. An example is given to illustrate the application of the proposed method. Copyright © 2009 John Wiley & Sons, Ltd.</description><subject>Control systems</subject><subject>Design engineering</subject><subject>Dynamical systems</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>fuzzy systems</subject><subject>linear matrix inequalities</subject><subject>Nonlinear dynamics</subject><subject>piecewise linear systems</subject><subject>piecewise Lyapunov functions</subject><subject>pole placement</subject><subject>Poles</subject><issn>1049-8923</issn><issn>1099-1239</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAUhYMoOKfgT-ijL51Jbpo2vumwUxkTZOJjSLNbiHZtbVpn9-vtmCg--HQO3I_D5SPknNEJo5RfNqWdMBGJAzJiVKmQcVCHuy5UmCgOx-TE-1dKhxsXI3KVdtttH9RVgUFdGItrLNsgMx5XQVUGtUOLG-cxmPem7srqI8i70rauKv0pOcpN4fHsO8fkOb1dTu_C-ePsfno9Dy2AFKHlJktiCauIcSpjGUUyE3muOBtCZpkSIs-GZ2gUAyCsgCdxlIiMKZZADhLG5GK_WzfVe4e-1WvnLRaFKbHqvGYyZiDEMPCL2qbyvsFc141bm6bXjOqdHj3o0Ts9Axru0Y0rsP-X00-L6V_e-RY_f3jTvGkZQxzpl8VML5RM5XJ2ox_gCz7Sc4s</recordid><startdate>20100325</startdate><enddate>20100325</enddate><creator>Tognetti, Eduardo S.</creator><creator>Oliveira, Vilma A.</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100325</creationdate><title>Fuzzy pole placement based on piecewise Lyapunov functions</title><author>Tognetti, Eduardo S. ; Oliveira, Vilma A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3364-c2ab8763d5120676556b4ff921b4f6bb944fb99205733e3d3287584b19183f363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Control systems</topic><topic>Design engineering</topic><topic>Dynamical systems</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>fuzzy systems</topic><topic>linear matrix inequalities</topic><topic>Nonlinear dynamics</topic><topic>piecewise linear systems</topic><topic>piecewise Lyapunov functions</topic><topic>pole placement</topic><topic>Poles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tognetti, Eduardo S.</creatorcontrib><creatorcontrib>Oliveira, Vilma A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tognetti, Eduardo S.</au><au>Oliveira, Vilma A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy pole placement based on piecewise Lyapunov functions</atitle><jtitle>International journal of robust and nonlinear control</jtitle><addtitle>Int. J. Robust Nonlinear Control</addtitle><date>2010-03-25</date><risdate>2010</risdate><volume>20</volume><issue>5</issue><spage>571</spage><epage>578</epage><pages>571-578</pages><issn>1049-8923</issn><issn>1099-1239</issn><eissn>1099-1239</eissn><abstract>This paper presents a controller design method for fuzzy dynamic systems based on piecewise Lyapunov functions with constraints on the closed‐loop pole location. The main idea is to use switched controllers to locate the poles of the system to obtain a satisfactory transient response. It is shown that the global fuzzy system satisfies the requirements for the design and that the control law can be obtained by solving a set of linear matrix inequalities, which can be efficiently solved with commercially available softwares. An example is given to illustrate the application of the proposed method. Copyright © 2009 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/rnc.1454</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2010-03, Vol.20 (5), p.571-578 |
issn | 1049-8923 1099-1239 1099-1239 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671344205 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Control systems Design engineering Dynamical systems Fuzzy Fuzzy logic Fuzzy set theory fuzzy systems linear matrix inequalities Nonlinear dynamics piecewise linear systems piecewise Lyapunov functions pole placement Poles |
title | Fuzzy pole placement based on piecewise Lyapunov functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A56%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20pole%20placement%20based%20on%20piecewise%20Lyapunov%20functions&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Tognetti,%20Eduardo%20S.&rft.date=2010-03-25&rft.volume=20&rft.issue=5&rft.spage=571&rft.epage=578&rft.pages=571-578&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.1454&rft_dat=%3Cproquest_cross%3E1671344205%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671344205&rft_id=info:pmid/&rfr_iscdi=true |