Dislocation evolution in 316L stainless steel subjected to uniaxial ratchetting deformation
Dislocation patterns and their evolution in 316L stainless steel subjected to uniaxial stress-controlled cyclic loading with occurrence of ratchetting deformation were observed by transmission electron microscopy (TEM). The microscopic observations show that the dislocation patterns change from low...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2010-08, Vol.527 (21), p.5952-5961 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5961 |
---|---|
container_issue | 21 |
container_start_page | 5952 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 527 |
creator | Kang, Guozheng Dong, Yawei Wang, Hong Liu, Yujie Cheng, Xiaojuan |
description | Dislocation patterns and their evolution in 316L stainless steel subjected to uniaxial stress-controlled cyclic loading with occurrence of ratchetting deformation were observed by transmission electron microscopy (TEM). The microscopic observations show that the dislocation patterns change from low density patterns such as dislocation lines and pile-ups to those with higher dislocation density such as dislocation tangles, veins, walls, and cells, when the macroscopic ratchetting strain progressively increases with the number of cycles. Although one or two kinds of dislocation patterns mentioned above are prevailing in most of the grains at certain stage of ratchetting deformation, other patterns can be also observed in some grains at the same time. The features of dislocation evolution presented during the uniaxial ratchetting deformation are summarized by comparing with the dislocation patterns observed during monotonic tension and symmetrical uniaxial strain-controlled cyclic loading. The uniaxial ratchetting of 316L stainless steel can be qualitatively explained by the observed dislocation patterns and their variation with the number of cycles. |
doi_str_mv | 10.1016/j.msea.2010.06.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671344139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509310006519</els_id><sourcerecordid>1671344139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-dac59e76fd10c188323705d3d77714d36787eea2dee4e01acebdccff19fefbfb3</originalsourceid><addsrcrecordid>eNp9kDFvFDEQhS0EEkfgD1Btg0Szl5n1nr0rpUFJgEgnpYGKwvLZY_DJt0483gj-PXu5KGWqeRq990bzCfERYY2A6ny_PjDZdQfLAtQaOnglVjho2fajVK_FCsYO2w2M8q14x7wHAOxhsxK_riKn7GyNeWroIaf5UcWpkai2DVcbp0TMiyJKDc-7PblKvqm5mado_0abmmKr-0O1xul34ynkcnjsey_eBJuYPjzNM_Hz6_WPy-_t9vbbzeWXbeukkrX11m1G0ip4BIfDIDupYeOl11pj76XSgyaynSfqCdA62nnnQsAxUNiFnTwTn0-9dyXfz8TVHCI7SslOlGc2qDTKvkc5LtbuZHUlMxcK5q7Egy3_DII5kjR7cyRpjiQNKLOQXEKfnvotO5tCsZOL_JzsJOhBol58FycfLc8-RCqGXaTJkY9lgWZ8ji-d-Q-5J4vH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671344139</pqid></control><display><type>article</type><title>Dislocation evolution in 316L stainless steel subjected to uniaxial ratchetting deformation</title><source>Elsevier ScienceDirect Journals</source><creator>Kang, Guozheng ; Dong, Yawei ; Wang, Hong ; Liu, Yujie ; Cheng, Xiaojuan</creator><creatorcontrib>Kang, Guozheng ; Dong, Yawei ; Wang, Hong ; Liu, Yujie ; Cheng, Xiaojuan</creatorcontrib><description>Dislocation patterns and their evolution in 316L stainless steel subjected to uniaxial stress-controlled cyclic loading with occurrence of ratchetting deformation were observed by transmission electron microscopy (TEM). The microscopic observations show that the dislocation patterns change from low density patterns such as dislocation lines and pile-ups to those with higher dislocation density such as dislocation tangles, veins, walls, and cells, when the macroscopic ratchetting strain progressively increases with the number of cycles. Although one or two kinds of dislocation patterns mentioned above are prevailing in most of the grains at certain stage of ratchetting deformation, other patterns can be also observed in some grains at the same time. The features of dislocation evolution presented during the uniaxial ratchetting deformation are summarized by comparing with the dislocation patterns observed during monotonic tension and symmetrical uniaxial strain-controlled cyclic loading. The uniaxial ratchetting of 316L stainless steel can be qualitatively explained by the observed dislocation patterns and their variation with the number of cycles.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2010.06.020</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>316L stainless steel ; Applied sciences ; Austenitic stainless steels ; Deformation ; Dislocation density ; Dislocation pattern ; Dislocations ; Elasticity. Plasticity ; Evolution ; Exact sciences and technology ; Fatigue (materials) ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Microscopic observation ; Ratcheting ; Ratchetting ; Serrated yielding ; Stainless steels ; Uniaxial cyclic loading</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2010-08, Vol.527 (21), p.5952-5961</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-dac59e76fd10c188323705d3d77714d36787eea2dee4e01acebdccff19fefbfb3</citedby><cites>FETCH-LOGICAL-c363t-dac59e76fd10c188323705d3d77714d36787eea2dee4e01acebdccff19fefbfb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2010.06.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23078317$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Guozheng</creatorcontrib><creatorcontrib>Dong, Yawei</creatorcontrib><creatorcontrib>Wang, Hong</creatorcontrib><creatorcontrib>Liu, Yujie</creatorcontrib><creatorcontrib>Cheng, Xiaojuan</creatorcontrib><title>Dislocation evolution in 316L stainless steel subjected to uniaxial ratchetting deformation</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>Dislocation patterns and their evolution in 316L stainless steel subjected to uniaxial stress-controlled cyclic loading with occurrence of ratchetting deformation were observed by transmission electron microscopy (TEM). The microscopic observations show that the dislocation patterns change from low density patterns such as dislocation lines and pile-ups to those with higher dislocation density such as dislocation tangles, veins, walls, and cells, when the macroscopic ratchetting strain progressively increases with the number of cycles. Although one or two kinds of dislocation patterns mentioned above are prevailing in most of the grains at certain stage of ratchetting deformation, other patterns can be also observed in some grains at the same time. The features of dislocation evolution presented during the uniaxial ratchetting deformation are summarized by comparing with the dislocation patterns observed during monotonic tension and symmetrical uniaxial strain-controlled cyclic loading. The uniaxial ratchetting of 316L stainless steel can be qualitatively explained by the observed dislocation patterns and their variation with the number of cycles.</description><subject>316L stainless steel</subject><subject>Applied sciences</subject><subject>Austenitic stainless steels</subject><subject>Deformation</subject><subject>Dislocation density</subject><subject>Dislocation pattern</subject><subject>Dislocations</subject><subject>Elasticity. Plasticity</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Fatigue (materials)</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Microscopic observation</subject><subject>Ratcheting</subject><subject>Ratchetting</subject><subject>Serrated yielding</subject><subject>Stainless steels</subject><subject>Uniaxial cyclic loading</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kDFvFDEQhS0EEkfgD1Btg0Szl5n1nr0rpUFJgEgnpYGKwvLZY_DJt0483gj-PXu5KGWqeRq990bzCfERYY2A6ny_PjDZdQfLAtQaOnglVjho2fajVK_FCsYO2w2M8q14x7wHAOxhsxK_riKn7GyNeWroIaf5UcWpkai2DVcbp0TMiyJKDc-7PblKvqm5mado_0abmmKr-0O1xul34ynkcnjsey_eBJuYPjzNM_Hz6_WPy-_t9vbbzeWXbeukkrX11m1G0ip4BIfDIDupYeOl11pj76XSgyaynSfqCdA62nnnQsAxUNiFnTwTn0-9dyXfz8TVHCI7SslOlGc2qDTKvkc5LtbuZHUlMxcK5q7Egy3_DII5kjR7cyRpjiQNKLOQXEKfnvotO5tCsZOL_JzsJOhBol58FycfLc8-RCqGXaTJkY9lgWZ8ji-d-Q-5J4vH</recordid><startdate>20100820</startdate><enddate>20100820</enddate><creator>Kang, Guozheng</creator><creator>Dong, Yawei</creator><creator>Wang, Hong</creator><creator>Liu, Yujie</creator><creator>Cheng, Xiaojuan</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100820</creationdate><title>Dislocation evolution in 316L stainless steel subjected to uniaxial ratchetting deformation</title><author>Kang, Guozheng ; Dong, Yawei ; Wang, Hong ; Liu, Yujie ; Cheng, Xiaojuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-dac59e76fd10c188323705d3d77714d36787eea2dee4e01acebdccff19fefbfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>316L stainless steel</topic><topic>Applied sciences</topic><topic>Austenitic stainless steels</topic><topic>Deformation</topic><topic>Dislocation density</topic><topic>Dislocation pattern</topic><topic>Dislocations</topic><topic>Elasticity. Plasticity</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Fatigue (materials)</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Microscopic observation</topic><topic>Ratcheting</topic><topic>Ratchetting</topic><topic>Serrated yielding</topic><topic>Stainless steels</topic><topic>Uniaxial cyclic loading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Guozheng</creatorcontrib><creatorcontrib>Dong, Yawei</creatorcontrib><creatorcontrib>Wang, Hong</creatorcontrib><creatorcontrib>Liu, Yujie</creatorcontrib><creatorcontrib>Cheng, Xiaojuan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Guozheng</au><au>Dong, Yawei</au><au>Wang, Hong</au><au>Liu, Yujie</au><au>Cheng, Xiaojuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dislocation evolution in 316L stainless steel subjected to uniaxial ratchetting deformation</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2010-08-20</date><risdate>2010</risdate><volume>527</volume><issue>21</issue><spage>5952</spage><epage>5961</epage><pages>5952-5961</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Dislocation patterns and their evolution in 316L stainless steel subjected to uniaxial stress-controlled cyclic loading with occurrence of ratchetting deformation were observed by transmission electron microscopy (TEM). The microscopic observations show that the dislocation patterns change from low density patterns such as dislocation lines and pile-ups to those with higher dislocation density such as dislocation tangles, veins, walls, and cells, when the macroscopic ratchetting strain progressively increases with the number of cycles. Although one or two kinds of dislocation patterns mentioned above are prevailing in most of the grains at certain stage of ratchetting deformation, other patterns can be also observed in some grains at the same time. The features of dislocation evolution presented during the uniaxial ratchetting deformation are summarized by comparing with the dislocation patterns observed during monotonic tension and symmetrical uniaxial strain-controlled cyclic loading. The uniaxial ratchetting of 316L stainless steel can be qualitatively explained by the observed dislocation patterns and their variation with the number of cycles.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2010.06.020</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2010-08, Vol.527 (21), p.5952-5961 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671344139 |
source | Elsevier ScienceDirect Journals |
subjects | 316L stainless steel Applied sciences Austenitic stainless steels Deformation Dislocation density Dislocation pattern Dislocations Elasticity. Plasticity Evolution Exact sciences and technology Fatigue (materials) Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy Microscopic observation Ratcheting Ratchetting Serrated yielding Stainless steels Uniaxial cyclic loading |
title | Dislocation evolution in 316L stainless steel subjected to uniaxial ratchetting deformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A31%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dislocation%20evolution%20in%20316L%20stainless%20steel%20subjected%20to%20uniaxial%20ratchetting%20deformation&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Kang,%20Guozheng&rft.date=2010-08-20&rft.volume=527&rft.issue=21&rft.spage=5952&rft.epage=5961&rft.pages=5952-5961&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2010.06.020&rft_dat=%3Cproquest_cross%3E1671344139%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671344139&rft_id=info:pmid/&rft_els_id=S0921509310006519&rfr_iscdi=true |