Dislocation evolution in 316L stainless steel subjected to uniaxial ratchetting deformation

Dislocation patterns and their evolution in 316L stainless steel subjected to uniaxial stress-controlled cyclic loading with occurrence of ratchetting deformation were observed by transmission electron microscopy (TEM). The microscopic observations show that the dislocation patterns change from low...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2010-08, Vol.527 (21), p.5952-5961
Hauptverfasser: Kang, Guozheng, Dong, Yawei, Wang, Hong, Liu, Yujie, Cheng, Xiaojuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5961
container_issue 21
container_start_page 5952
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 527
creator Kang, Guozheng
Dong, Yawei
Wang, Hong
Liu, Yujie
Cheng, Xiaojuan
description Dislocation patterns and their evolution in 316L stainless steel subjected to uniaxial stress-controlled cyclic loading with occurrence of ratchetting deformation were observed by transmission electron microscopy (TEM). The microscopic observations show that the dislocation patterns change from low density patterns such as dislocation lines and pile-ups to those with higher dislocation density such as dislocation tangles, veins, walls, and cells, when the macroscopic ratchetting strain progressively increases with the number of cycles. Although one or two kinds of dislocation patterns mentioned above are prevailing in most of the grains at certain stage of ratchetting deformation, other patterns can be also observed in some grains at the same time. The features of dislocation evolution presented during the uniaxial ratchetting deformation are summarized by comparing with the dislocation patterns observed during monotonic tension and symmetrical uniaxial strain-controlled cyclic loading. The uniaxial ratchetting of 316L stainless steel can be qualitatively explained by the observed dislocation patterns and their variation with the number of cycles.
doi_str_mv 10.1016/j.msea.2010.06.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671344139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509310006519</els_id><sourcerecordid>1671344139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-dac59e76fd10c188323705d3d77714d36787eea2dee4e01acebdccff19fefbfb3</originalsourceid><addsrcrecordid>eNp9kDFvFDEQhS0EEkfgD1Btg0Szl5n1nr0rpUFJgEgnpYGKwvLZY_DJt0483gj-PXu5KGWqeRq990bzCfERYY2A6ny_PjDZdQfLAtQaOnglVjho2fajVK_FCsYO2w2M8q14x7wHAOxhsxK_riKn7GyNeWroIaf5UcWpkai2DVcbp0TMiyJKDc-7PblKvqm5mado_0abmmKr-0O1xul34ynkcnjsey_eBJuYPjzNM_Hz6_WPy-_t9vbbzeWXbeukkrX11m1G0ip4BIfDIDupYeOl11pj76XSgyaynSfqCdA62nnnQsAxUNiFnTwTn0-9dyXfz8TVHCI7SslOlGc2qDTKvkc5LtbuZHUlMxcK5q7Egy3_DII5kjR7cyRpjiQNKLOQXEKfnvotO5tCsZOL_JzsJOhBol58FycfLc8-RCqGXaTJkY9lgWZ8ji-d-Q-5J4vH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671344139</pqid></control><display><type>article</type><title>Dislocation evolution in 316L stainless steel subjected to uniaxial ratchetting deformation</title><source>Elsevier ScienceDirect Journals</source><creator>Kang, Guozheng ; Dong, Yawei ; Wang, Hong ; Liu, Yujie ; Cheng, Xiaojuan</creator><creatorcontrib>Kang, Guozheng ; Dong, Yawei ; Wang, Hong ; Liu, Yujie ; Cheng, Xiaojuan</creatorcontrib><description>Dislocation patterns and their evolution in 316L stainless steel subjected to uniaxial stress-controlled cyclic loading with occurrence of ratchetting deformation were observed by transmission electron microscopy (TEM). The microscopic observations show that the dislocation patterns change from low density patterns such as dislocation lines and pile-ups to those with higher dislocation density such as dislocation tangles, veins, walls, and cells, when the macroscopic ratchetting strain progressively increases with the number of cycles. Although one or two kinds of dislocation patterns mentioned above are prevailing in most of the grains at certain stage of ratchetting deformation, other patterns can be also observed in some grains at the same time. The features of dislocation evolution presented during the uniaxial ratchetting deformation are summarized by comparing with the dislocation patterns observed during monotonic tension and symmetrical uniaxial strain-controlled cyclic loading. The uniaxial ratchetting of 316L stainless steel can be qualitatively explained by the observed dislocation patterns and their variation with the number of cycles.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2010.06.020</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>316L stainless steel ; Applied sciences ; Austenitic stainless steels ; Deformation ; Dislocation density ; Dislocation pattern ; Dislocations ; Elasticity. Plasticity ; Evolution ; Exact sciences and technology ; Fatigue (materials) ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Microscopic observation ; Ratcheting ; Ratchetting ; Serrated yielding ; Stainless steels ; Uniaxial cyclic loading</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2010-08, Vol.527 (21), p.5952-5961</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-dac59e76fd10c188323705d3d77714d36787eea2dee4e01acebdccff19fefbfb3</citedby><cites>FETCH-LOGICAL-c363t-dac59e76fd10c188323705d3d77714d36787eea2dee4e01acebdccff19fefbfb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2010.06.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23078317$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Guozheng</creatorcontrib><creatorcontrib>Dong, Yawei</creatorcontrib><creatorcontrib>Wang, Hong</creatorcontrib><creatorcontrib>Liu, Yujie</creatorcontrib><creatorcontrib>Cheng, Xiaojuan</creatorcontrib><title>Dislocation evolution in 316L stainless steel subjected to uniaxial ratchetting deformation</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Dislocation patterns and their evolution in 316L stainless steel subjected to uniaxial stress-controlled cyclic loading with occurrence of ratchetting deformation were observed by transmission electron microscopy (TEM). The microscopic observations show that the dislocation patterns change from low density patterns such as dislocation lines and pile-ups to those with higher dislocation density such as dislocation tangles, veins, walls, and cells, when the macroscopic ratchetting strain progressively increases with the number of cycles. Although one or two kinds of dislocation patterns mentioned above are prevailing in most of the grains at certain stage of ratchetting deformation, other patterns can be also observed in some grains at the same time. The features of dislocation evolution presented during the uniaxial ratchetting deformation are summarized by comparing with the dislocation patterns observed during monotonic tension and symmetrical uniaxial strain-controlled cyclic loading. The uniaxial ratchetting of 316L stainless steel can be qualitatively explained by the observed dislocation patterns and their variation with the number of cycles.</description><subject>316L stainless steel</subject><subject>Applied sciences</subject><subject>Austenitic stainless steels</subject><subject>Deformation</subject><subject>Dislocation density</subject><subject>Dislocation pattern</subject><subject>Dislocations</subject><subject>Elasticity. Plasticity</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Fatigue (materials)</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Microscopic observation</subject><subject>Ratcheting</subject><subject>Ratchetting</subject><subject>Serrated yielding</subject><subject>Stainless steels</subject><subject>Uniaxial cyclic loading</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kDFvFDEQhS0EEkfgD1Btg0Szl5n1nr0rpUFJgEgnpYGKwvLZY_DJt0483gj-PXu5KGWqeRq990bzCfERYY2A6ny_PjDZdQfLAtQaOnglVjho2fajVK_FCsYO2w2M8q14x7wHAOxhsxK_riKn7GyNeWroIaf5UcWpkai2DVcbp0TMiyJKDc-7PblKvqm5mado_0abmmKr-0O1xul34ynkcnjsey_eBJuYPjzNM_Hz6_WPy-_t9vbbzeWXbeukkrX11m1G0ip4BIfDIDupYeOl11pj76XSgyaynSfqCdA62nnnQsAxUNiFnTwTn0-9dyXfz8TVHCI7SslOlGc2qDTKvkc5LtbuZHUlMxcK5q7Egy3_DII5kjR7cyRpjiQNKLOQXEKfnvotO5tCsZOL_JzsJOhBol58FycfLc8-RCqGXaTJkY9lgWZ8ji-d-Q-5J4vH</recordid><startdate>20100820</startdate><enddate>20100820</enddate><creator>Kang, Guozheng</creator><creator>Dong, Yawei</creator><creator>Wang, Hong</creator><creator>Liu, Yujie</creator><creator>Cheng, Xiaojuan</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100820</creationdate><title>Dislocation evolution in 316L stainless steel subjected to uniaxial ratchetting deformation</title><author>Kang, Guozheng ; Dong, Yawei ; Wang, Hong ; Liu, Yujie ; Cheng, Xiaojuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-dac59e76fd10c188323705d3d77714d36787eea2dee4e01acebdccff19fefbfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>316L stainless steel</topic><topic>Applied sciences</topic><topic>Austenitic stainless steels</topic><topic>Deformation</topic><topic>Dislocation density</topic><topic>Dislocation pattern</topic><topic>Dislocations</topic><topic>Elasticity. Plasticity</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Fatigue (materials)</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Microscopic observation</topic><topic>Ratcheting</topic><topic>Ratchetting</topic><topic>Serrated yielding</topic><topic>Stainless steels</topic><topic>Uniaxial cyclic loading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Guozheng</creatorcontrib><creatorcontrib>Dong, Yawei</creatorcontrib><creatorcontrib>Wang, Hong</creatorcontrib><creatorcontrib>Liu, Yujie</creatorcontrib><creatorcontrib>Cheng, Xiaojuan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Guozheng</au><au>Dong, Yawei</au><au>Wang, Hong</au><au>Liu, Yujie</au><au>Cheng, Xiaojuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dislocation evolution in 316L stainless steel subjected to uniaxial ratchetting deformation</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2010-08-20</date><risdate>2010</risdate><volume>527</volume><issue>21</issue><spage>5952</spage><epage>5961</epage><pages>5952-5961</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Dislocation patterns and their evolution in 316L stainless steel subjected to uniaxial stress-controlled cyclic loading with occurrence of ratchetting deformation were observed by transmission electron microscopy (TEM). The microscopic observations show that the dislocation patterns change from low density patterns such as dislocation lines and pile-ups to those with higher dislocation density such as dislocation tangles, veins, walls, and cells, when the macroscopic ratchetting strain progressively increases with the number of cycles. Although one or two kinds of dislocation patterns mentioned above are prevailing in most of the grains at certain stage of ratchetting deformation, other patterns can be also observed in some grains at the same time. The features of dislocation evolution presented during the uniaxial ratchetting deformation are summarized by comparing with the dislocation patterns observed during monotonic tension and symmetrical uniaxial strain-controlled cyclic loading. The uniaxial ratchetting of 316L stainless steel can be qualitatively explained by the observed dislocation patterns and their variation with the number of cycles.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2010.06.020</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2010-08, Vol.527 (21), p.5952-5961
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_1671344139
source Elsevier ScienceDirect Journals
subjects 316L stainless steel
Applied sciences
Austenitic stainless steels
Deformation
Dislocation density
Dislocation pattern
Dislocations
Elasticity. Plasticity
Evolution
Exact sciences and technology
Fatigue (materials)
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Microscopic observation
Ratcheting
Ratchetting
Serrated yielding
Stainless steels
Uniaxial cyclic loading
title Dislocation evolution in 316L stainless steel subjected to uniaxial ratchetting deformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A31%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dislocation%20evolution%20in%20316L%20stainless%20steel%20subjected%20to%20uniaxial%20ratchetting%20deformation&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Kang,%20Guozheng&rft.date=2010-08-20&rft.volume=527&rft.issue=21&rft.spage=5952&rft.epage=5961&rft.pages=5952-5961&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2010.06.020&rft_dat=%3Cproquest_cross%3E1671344139%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671344139&rft_id=info:pmid/&rft_els_id=S0921509310006519&rfr_iscdi=true