GPU accelerated lattice Boltzmann model for shallow water flow and mass transport

A lattice Boltzmann method (LBM) for solving the shallow water equations (SWEs) and the advection–dispersion equation is developed and implemented on graphics processing unit (GPU)‐based architectures. A generalized lattice Boltzmann equation (GLBE) with a multiple‐relaxation‐time (MRT) collision me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2011-04, Vol.86 (3), p.316-334
Hauptverfasser: Tubbs, Kevin R., Tsai, Frank T.-C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 334
container_issue 3
container_start_page 316
container_title International journal for numerical methods in engineering
container_volume 86
creator Tubbs, Kevin R.
Tsai, Frank T.-C.
description A lattice Boltzmann method (LBM) for solving the shallow water equations (SWEs) and the advection–dispersion equation is developed and implemented on graphics processing unit (GPU)‐based architectures. A generalized lattice Boltzmann equation (GLBE) with a multiple‐relaxation‐time (MRT) collision method is used to simulate shallow water flow. A two‐relaxation‐time (TRT) method with two speed‐of‐sound techniques is used to solve the advection–dispersion equation. The proposed LBM is implemented to an NVIDIA ® Computing Processor in a single GPU workstation. GPU computing is performed using the Jacket GPU engine for MATLAB ® and CUDA. In the numerical examples, the MRT‐LBM model and the TRT‐LBM model are verified and show excellent agreement to exact solutions. The MRT outperforms the single‐relaxation‐time (SRT) collision operator in terms of stability and accuracy when the SRT parameter is close to the stability limit of 0.5. Mass transport with velocity‐dependent dispersion in shallow water flow is simulated by combining the MRT‐LBM model and the TRT‐LBM model. GPU performance with CUDA code shows an order of magnitude higher than MATLAB‐Jacket code. Moreover, the GPU parallel performance increases as the grid size increases. The results indicate the promise of the GPU‐accelerated LBM for modeling mass transport phenomena in shallow water flows. Copyright © 2010 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.3066
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671344102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671344102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3666-561eba1cce05cd01bc6e45b8a3e0b4393986a3d03df776ed03b0ed750ec5530b3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFbBn7AXwUvqbLa7SY5atAp-YovelslmgtFNUncjVX-9KZZ68jQvzMMzzMvYoYCRAIhPmppGErTeYgMBWRJBDMk2G_SrLFJZKnbZXgivAEIokAP2ML2fc7SWHHnsqOAOu66yxM9a133X2DS8bgtyvGw9Dy_oXLvky570vFxFbApeYwi889iEReu7fbZTogt0sJ5DNr84n00uo-u76dXk9DqyUmsdKS0oR9FfBmULELnVNFZ5ipIgH8tMZqlGWYAsyiTR1IccqEgUkFVKQi6H7PjXu_Dt-weFztRV6P9w2FD7EYzQiZDjsYD4D7W-DcFTaRa-qtF_GQFm1ZrpWzOr1nr0aG3FYNGV_Ve2Chs-lplSKl4po19uWTn6-tdnbm_O1941X4WOPjc8-jejE5ko83Q7Nens4TkV05l5lD-gxYon</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671344102</pqid></control><display><type>article</type><title>GPU accelerated lattice Boltzmann model for shallow water flow and mass transport</title><source>Wiley Journals</source><creator>Tubbs, Kevin R. ; Tsai, Frank T.-C.</creator><creatorcontrib>Tubbs, Kevin R. ; Tsai, Frank T.-C.</creatorcontrib><description>A lattice Boltzmann method (LBM) for solving the shallow water equations (SWEs) and the advection–dispersion equation is developed and implemented on graphics processing unit (GPU)‐based architectures. A generalized lattice Boltzmann equation (GLBE) with a multiple‐relaxation‐time (MRT) collision method is used to simulate shallow water flow. A two‐relaxation‐time (TRT) method with two speed‐of‐sound techniques is used to solve the advection–dispersion equation. The proposed LBM is implemented to an NVIDIA ® Computing Processor in a single GPU workstation. GPU computing is performed using the Jacket GPU engine for MATLAB ® and CUDA. In the numerical examples, the MRT‐LBM model and the TRT‐LBM model are verified and show excellent agreement to exact solutions. The MRT outperforms the single‐relaxation‐time (SRT) collision operator in terms of stability and accuracy when the SRT parameter is close to the stability limit of 0.5. Mass transport with velocity‐dependent dispersion in shallow water flow is simulated by combining the MRT‐LBM model and the TRT‐LBM model. GPU performance with CUDA code shows an order of magnitude higher than MATLAB‐Jacket code. Moreover, the GPU parallel performance increases as the grid size increases. The results indicate the promise of the GPU‐accelerated LBM for modeling mass transport phenomena in shallow water flows. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>ISSN: 1097-0207</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.3066</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>advection-dispersion equation ; Classical statistical mechanics ; Computation ; Computer simulation ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; General theory ; GPU computing ; Kinetic theory ; lattice Boltzmann ; Lattices ; Mathematical analysis ; Mathematical models ; Matlab ; multiple relaxation times ; Physics ; Shallow water ; shallow water equation ; Statistical physics, thermodynamics, and nonlinear dynamical systems ; Transport ; two relaxation times</subject><ispartof>International journal for numerical methods in engineering, 2011-04, Vol.86 (3), p.316-334</ispartof><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3666-561eba1cce05cd01bc6e45b8a3e0b4393986a3d03df776ed03b0ed750ec5530b3</citedby><cites>FETCH-LOGICAL-c3666-561eba1cce05cd01bc6e45b8a3e0b4393986a3d03df776ed03b0ed750ec5530b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.3066$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.3066$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23955522$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tubbs, Kevin R.</creatorcontrib><creatorcontrib>Tsai, Frank T.-C.</creatorcontrib><title>GPU accelerated lattice Boltzmann model for shallow water flow and mass transport</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>A lattice Boltzmann method (LBM) for solving the shallow water equations (SWEs) and the advection–dispersion equation is developed and implemented on graphics processing unit (GPU)‐based architectures. A generalized lattice Boltzmann equation (GLBE) with a multiple‐relaxation‐time (MRT) collision method is used to simulate shallow water flow. A two‐relaxation‐time (TRT) method with two speed‐of‐sound techniques is used to solve the advection–dispersion equation. The proposed LBM is implemented to an NVIDIA ® Computing Processor in a single GPU workstation. GPU computing is performed using the Jacket GPU engine for MATLAB ® and CUDA. In the numerical examples, the MRT‐LBM model and the TRT‐LBM model are verified and show excellent agreement to exact solutions. The MRT outperforms the single‐relaxation‐time (SRT) collision operator in terms of stability and accuracy when the SRT parameter is close to the stability limit of 0.5. Mass transport with velocity‐dependent dispersion in shallow water flow is simulated by combining the MRT‐LBM model and the TRT‐LBM model. GPU performance with CUDA code shows an order of magnitude higher than MATLAB‐Jacket code. Moreover, the GPU parallel performance increases as the grid size increases. The results indicate the promise of the GPU‐accelerated LBM for modeling mass transport phenomena in shallow water flows. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><subject>advection-dispersion equation</subject><subject>Classical statistical mechanics</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory</subject><subject>GPU computing</subject><subject>Kinetic theory</subject><subject>lattice Boltzmann</subject><subject>Lattices</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Matlab</subject><subject>multiple relaxation times</subject><subject>Physics</subject><subject>Shallow water</subject><subject>shallow water equation</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><subject>Transport</subject><subject>two relaxation times</subject><issn>0029-5981</issn><issn>1097-0207</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFbBn7AXwUvqbLa7SY5atAp-YovelslmgtFNUncjVX-9KZZ68jQvzMMzzMvYoYCRAIhPmppGErTeYgMBWRJBDMk2G_SrLFJZKnbZXgivAEIokAP2ML2fc7SWHHnsqOAOu66yxM9a133X2DS8bgtyvGw9Dy_oXLvky570vFxFbApeYwi889iEReu7fbZTogt0sJ5DNr84n00uo-u76dXk9DqyUmsdKS0oR9FfBmULELnVNFZ5ipIgH8tMZqlGWYAsyiTR1IccqEgUkFVKQi6H7PjXu_Dt-weFztRV6P9w2FD7EYzQiZDjsYD4D7W-DcFTaRa-qtF_GQFm1ZrpWzOr1nr0aG3FYNGV_Ve2Chs-lplSKl4po19uWTn6-tdnbm_O1941X4WOPjc8-jejE5ko83Q7Nens4TkV05l5lD-gxYon</recordid><startdate>20110422</startdate><enddate>20110422</enddate><creator>Tubbs, Kevin R.</creator><creator>Tsai, Frank T.-C.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110422</creationdate><title>GPU accelerated lattice Boltzmann model for shallow water flow and mass transport</title><author>Tubbs, Kevin R. ; Tsai, Frank T.-C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3666-561eba1cce05cd01bc6e45b8a3e0b4393986a3d03df776ed03b0ed750ec5530b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>advection-dispersion equation</topic><topic>Classical statistical mechanics</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory</topic><topic>GPU computing</topic><topic>Kinetic theory</topic><topic>lattice Boltzmann</topic><topic>Lattices</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Matlab</topic><topic>multiple relaxation times</topic><topic>Physics</topic><topic>Shallow water</topic><topic>shallow water equation</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><topic>Transport</topic><topic>two relaxation times</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tubbs, Kevin R.</creatorcontrib><creatorcontrib>Tsai, Frank T.-C.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tubbs, Kevin R.</au><au>Tsai, Frank T.-C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GPU accelerated lattice Boltzmann model for shallow water flow and mass transport</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2011-04-22</date><risdate>2011</risdate><volume>86</volume><issue>3</issue><spage>316</spage><epage>334</epage><pages>316-334</pages><issn>0029-5981</issn><issn>1097-0207</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>A lattice Boltzmann method (LBM) for solving the shallow water equations (SWEs) and the advection–dispersion equation is developed and implemented on graphics processing unit (GPU)‐based architectures. A generalized lattice Boltzmann equation (GLBE) with a multiple‐relaxation‐time (MRT) collision method is used to simulate shallow water flow. A two‐relaxation‐time (TRT) method with two speed‐of‐sound techniques is used to solve the advection–dispersion equation. The proposed LBM is implemented to an NVIDIA ® Computing Processor in a single GPU workstation. GPU computing is performed using the Jacket GPU engine for MATLAB ® and CUDA. In the numerical examples, the MRT‐LBM model and the TRT‐LBM model are verified and show excellent agreement to exact solutions. The MRT outperforms the single‐relaxation‐time (SRT) collision operator in terms of stability and accuracy when the SRT parameter is close to the stability limit of 0.5. Mass transport with velocity‐dependent dispersion in shallow water flow is simulated by combining the MRT‐LBM model and the TRT‐LBM model. GPU performance with CUDA code shows an order of magnitude higher than MATLAB‐Jacket code. Moreover, the GPU parallel performance increases as the grid size increases. The results indicate the promise of the GPU‐accelerated LBM for modeling mass transport phenomena in shallow water flows. Copyright © 2010 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nme.3066</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2011-04, Vol.86 (3), p.316-334
issn 0029-5981
1097-0207
1097-0207
language eng
recordid cdi_proquest_miscellaneous_1671344102
source Wiley Journals
subjects advection-dispersion equation
Classical statistical mechanics
Computation
Computer simulation
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
General theory
GPU computing
Kinetic theory
lattice Boltzmann
Lattices
Mathematical analysis
Mathematical models
Matlab
multiple relaxation times
Physics
Shallow water
shallow water equation
Statistical physics, thermodynamics, and nonlinear dynamical systems
Transport
two relaxation times
title GPU accelerated lattice Boltzmann model for shallow water flow and mass transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A16%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GPU%20accelerated%20lattice%20Boltzmann%20model%20for%20shallow%20water%20flow%20and%20mass%20transport&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Tubbs,%20Kevin%20R.&rft.date=2011-04-22&rft.volume=86&rft.issue=3&rft.spage=316&rft.epage=334&rft.pages=316-334&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.3066&rft_dat=%3Cproquest_cross%3E1671344102%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671344102&rft_id=info:pmid/&rfr_iscdi=true