GPU accelerated lattice Boltzmann model for shallow water flow and mass transport
A lattice Boltzmann method (LBM) for solving the shallow water equations (SWEs) and the advection–dispersion equation is developed and implemented on graphics processing unit (GPU)‐based architectures. A generalized lattice Boltzmann equation (GLBE) with a multiple‐relaxation‐time (MRT) collision me...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2011-04, Vol.86 (3), p.316-334 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 334 |
---|---|
container_issue | 3 |
container_start_page | 316 |
container_title | International journal for numerical methods in engineering |
container_volume | 86 |
creator | Tubbs, Kevin R. Tsai, Frank T.-C. |
description | A lattice Boltzmann method (LBM) for solving the shallow water equations (SWEs) and the advection–dispersion equation is developed and implemented on graphics processing unit (GPU)‐based architectures. A generalized lattice Boltzmann equation (GLBE) with a multiple‐relaxation‐time (MRT) collision method is used to simulate shallow water flow. A two‐relaxation‐time (TRT) method with two speed‐of‐sound techniques is used to solve the advection–dispersion equation. The proposed LBM is implemented to an NVIDIA ® Computing Processor in a single GPU workstation. GPU computing is performed using the Jacket GPU engine for MATLAB ® and CUDA. In the numerical examples, the MRT‐LBM model and the TRT‐LBM model are verified and show excellent agreement to exact solutions. The MRT outperforms the single‐relaxation‐time (SRT) collision operator in terms of stability and accuracy when the SRT parameter is close to the stability limit of 0.5. Mass transport with velocity‐dependent dispersion in shallow water flow is simulated by combining the MRT‐LBM model and the TRT‐LBM model. GPU performance with CUDA code shows an order of magnitude higher than MATLAB‐Jacket code. Moreover, the GPU parallel performance increases as the grid size increases. The results indicate the promise of the GPU‐accelerated LBM for modeling mass transport phenomena in shallow water flows. Copyright © 2010 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.3066 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671344102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671344102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3666-561eba1cce05cd01bc6e45b8a3e0b4393986a3d03df776ed03b0ed750ec5530b3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFbBn7AXwUvqbLa7SY5atAp-YovelslmgtFNUncjVX-9KZZ68jQvzMMzzMvYoYCRAIhPmppGErTeYgMBWRJBDMk2G_SrLFJZKnbZXgivAEIokAP2ML2fc7SWHHnsqOAOu66yxM9a133X2DS8bgtyvGw9Dy_oXLvky570vFxFbApeYwi889iEReu7fbZTogt0sJ5DNr84n00uo-u76dXk9DqyUmsdKS0oR9FfBmULELnVNFZ5ipIgH8tMZqlGWYAsyiTR1IccqEgUkFVKQi6H7PjXu_Dt-weFztRV6P9w2FD7EYzQiZDjsYD4D7W-DcFTaRa-qtF_GQFm1ZrpWzOr1nr0aG3FYNGV_Ve2Chs-lplSKl4po19uWTn6-tdnbm_O1941X4WOPjc8-jejE5ko83Q7Nens4TkV05l5lD-gxYon</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671344102</pqid></control><display><type>article</type><title>GPU accelerated lattice Boltzmann model for shallow water flow and mass transport</title><source>Wiley Journals</source><creator>Tubbs, Kevin R. ; Tsai, Frank T.-C.</creator><creatorcontrib>Tubbs, Kevin R. ; Tsai, Frank T.-C.</creatorcontrib><description>A lattice Boltzmann method (LBM) for solving the shallow water equations (SWEs) and the advection–dispersion equation is developed and implemented on graphics processing unit (GPU)‐based architectures. A generalized lattice Boltzmann equation (GLBE) with a multiple‐relaxation‐time (MRT) collision method is used to simulate shallow water flow. A two‐relaxation‐time (TRT) method with two speed‐of‐sound techniques is used to solve the advection–dispersion equation. The proposed LBM is implemented to an NVIDIA ® Computing Processor in a single GPU workstation. GPU computing is performed using the Jacket GPU engine for MATLAB ® and CUDA. In the numerical examples, the MRT‐LBM model and the TRT‐LBM model are verified and show excellent agreement to exact solutions. The MRT outperforms the single‐relaxation‐time (SRT) collision operator in terms of stability and accuracy when the SRT parameter is close to the stability limit of 0.5. Mass transport with velocity‐dependent dispersion in shallow water flow is simulated by combining the MRT‐LBM model and the TRT‐LBM model. GPU performance with CUDA code shows an order of magnitude higher than MATLAB‐Jacket code. Moreover, the GPU parallel performance increases as the grid size increases. The results indicate the promise of the GPU‐accelerated LBM for modeling mass transport phenomena in shallow water flows. Copyright © 2010 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>ISSN: 1097-0207</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.3066</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>advection-dispersion equation ; Classical statistical mechanics ; Computation ; Computer simulation ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; General theory ; GPU computing ; Kinetic theory ; lattice Boltzmann ; Lattices ; Mathematical analysis ; Mathematical models ; Matlab ; multiple relaxation times ; Physics ; Shallow water ; shallow water equation ; Statistical physics, thermodynamics, and nonlinear dynamical systems ; Transport ; two relaxation times</subject><ispartof>International journal for numerical methods in engineering, 2011-04, Vol.86 (3), p.316-334</ispartof><rights>Copyright © 2010 John Wiley & Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3666-561eba1cce05cd01bc6e45b8a3e0b4393986a3d03df776ed03b0ed750ec5530b3</citedby><cites>FETCH-LOGICAL-c3666-561eba1cce05cd01bc6e45b8a3e0b4393986a3d03df776ed03b0ed750ec5530b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.3066$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.3066$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23955522$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tubbs, Kevin R.</creatorcontrib><creatorcontrib>Tsai, Frank T.-C.</creatorcontrib><title>GPU accelerated lattice Boltzmann model for shallow water flow and mass transport</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>A lattice Boltzmann method (LBM) for solving the shallow water equations (SWEs) and the advection–dispersion equation is developed and implemented on graphics processing unit (GPU)‐based architectures. A generalized lattice Boltzmann equation (GLBE) with a multiple‐relaxation‐time (MRT) collision method is used to simulate shallow water flow. A two‐relaxation‐time (TRT) method with two speed‐of‐sound techniques is used to solve the advection–dispersion equation. The proposed LBM is implemented to an NVIDIA ® Computing Processor in a single GPU workstation. GPU computing is performed using the Jacket GPU engine for MATLAB ® and CUDA. In the numerical examples, the MRT‐LBM model and the TRT‐LBM model are verified and show excellent agreement to exact solutions. The MRT outperforms the single‐relaxation‐time (SRT) collision operator in terms of stability and accuracy when the SRT parameter is close to the stability limit of 0.5. Mass transport with velocity‐dependent dispersion in shallow water flow is simulated by combining the MRT‐LBM model and the TRT‐LBM model. GPU performance with CUDA code shows an order of magnitude higher than MATLAB‐Jacket code. Moreover, the GPU parallel performance increases as the grid size increases. The results indicate the promise of the GPU‐accelerated LBM for modeling mass transport phenomena in shallow water flows. Copyright © 2010 John Wiley & Sons, Ltd.</description><subject>advection-dispersion equation</subject><subject>Classical statistical mechanics</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory</subject><subject>GPU computing</subject><subject>Kinetic theory</subject><subject>lattice Boltzmann</subject><subject>Lattices</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Matlab</subject><subject>multiple relaxation times</subject><subject>Physics</subject><subject>Shallow water</subject><subject>shallow water equation</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><subject>Transport</subject><subject>two relaxation times</subject><issn>0029-5981</issn><issn>1097-0207</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFbBn7AXwUvqbLa7SY5atAp-YovelslmgtFNUncjVX-9KZZ68jQvzMMzzMvYoYCRAIhPmppGErTeYgMBWRJBDMk2G_SrLFJZKnbZXgivAEIokAP2ML2fc7SWHHnsqOAOu66yxM9a133X2DS8bgtyvGw9Dy_oXLvky570vFxFbApeYwi889iEReu7fbZTogt0sJ5DNr84n00uo-u76dXk9DqyUmsdKS0oR9FfBmULELnVNFZ5ipIgH8tMZqlGWYAsyiTR1IccqEgUkFVKQi6H7PjXu_Dt-weFztRV6P9w2FD7EYzQiZDjsYD4D7W-DcFTaRa-qtF_GQFm1ZrpWzOr1nr0aG3FYNGV_Ve2Chs-lplSKl4po19uWTn6-tdnbm_O1941X4WOPjc8-jejE5ko83Q7Nens4TkV05l5lD-gxYon</recordid><startdate>20110422</startdate><enddate>20110422</enddate><creator>Tubbs, Kevin R.</creator><creator>Tsai, Frank T.-C.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110422</creationdate><title>GPU accelerated lattice Boltzmann model for shallow water flow and mass transport</title><author>Tubbs, Kevin R. ; Tsai, Frank T.-C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3666-561eba1cce05cd01bc6e45b8a3e0b4393986a3d03df776ed03b0ed750ec5530b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>advection-dispersion equation</topic><topic>Classical statistical mechanics</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory</topic><topic>GPU computing</topic><topic>Kinetic theory</topic><topic>lattice Boltzmann</topic><topic>Lattices</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Matlab</topic><topic>multiple relaxation times</topic><topic>Physics</topic><topic>Shallow water</topic><topic>shallow water equation</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><topic>Transport</topic><topic>two relaxation times</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tubbs, Kevin R.</creatorcontrib><creatorcontrib>Tsai, Frank T.-C.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tubbs, Kevin R.</au><au>Tsai, Frank T.-C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GPU accelerated lattice Boltzmann model for shallow water flow and mass transport</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2011-04-22</date><risdate>2011</risdate><volume>86</volume><issue>3</issue><spage>316</spage><epage>334</epage><pages>316-334</pages><issn>0029-5981</issn><issn>1097-0207</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>A lattice Boltzmann method (LBM) for solving the shallow water equations (SWEs) and the advection–dispersion equation is developed and implemented on graphics processing unit (GPU)‐based architectures. A generalized lattice Boltzmann equation (GLBE) with a multiple‐relaxation‐time (MRT) collision method is used to simulate shallow water flow. A two‐relaxation‐time (TRT) method with two speed‐of‐sound techniques is used to solve the advection–dispersion equation. The proposed LBM is implemented to an NVIDIA ® Computing Processor in a single GPU workstation. GPU computing is performed using the Jacket GPU engine for MATLAB ® and CUDA. In the numerical examples, the MRT‐LBM model and the TRT‐LBM model are verified and show excellent agreement to exact solutions. The MRT outperforms the single‐relaxation‐time (SRT) collision operator in terms of stability and accuracy when the SRT parameter is close to the stability limit of 0.5. Mass transport with velocity‐dependent dispersion in shallow water flow is simulated by combining the MRT‐LBM model and the TRT‐LBM model. GPU performance with CUDA code shows an order of magnitude higher than MATLAB‐Jacket code. Moreover, the GPU parallel performance increases as the grid size increases. The results indicate the promise of the GPU‐accelerated LBM for modeling mass transport phenomena in shallow water flows. Copyright © 2010 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nme.3066</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2011-04, Vol.86 (3), p.316-334 |
issn | 0029-5981 1097-0207 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671344102 |
source | Wiley Journals |
subjects | advection-dispersion equation Classical statistical mechanics Computation Computer simulation Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) General theory GPU computing Kinetic theory lattice Boltzmann Lattices Mathematical analysis Mathematical models Matlab multiple relaxation times Physics Shallow water shallow water equation Statistical physics, thermodynamics, and nonlinear dynamical systems Transport two relaxation times |
title | GPU accelerated lattice Boltzmann model for shallow water flow and mass transport |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A16%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GPU%20accelerated%20lattice%20Boltzmann%20model%20for%20shallow%20water%20flow%20and%20mass%20transport&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Tubbs,%20Kevin%20R.&rft.date=2011-04-22&rft.volume=86&rft.issue=3&rft.spage=316&rft.epage=334&rft.pages=316-334&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.3066&rft_dat=%3Cproquest_cross%3E1671344102%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671344102&rft_id=info:pmid/&rfr_iscdi=true |