Inverted hierarchical neuro-fuzzy BSP system: a novel neuro-fuzzy model for pattern classification and rule extraction in databases

This paper introduces the Inverted Hierarchical Neuro-Fuzzy BSP System (HNFB/sup -1/), a new neuro-fuzzy model that has been specifically created for record classification and rule extraction in databases. The HNFB/sup -1/ is based on the Hierarchical Neuro-Fuzzy Binary Space Partitioning Model (HNF...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on human-machine systems 2006-03, Vol.36 (2), p.236-248
Hauptverfasser: Goncalves, L.B., Vellasco, M.M.B.R., Pacheco, M.A.C., Flavio Joaquim de Souza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 248
container_issue 2
container_start_page 236
container_title IEEE transactions on human-machine systems
container_volume 36
creator Goncalves, L.B.
Vellasco, M.M.B.R.
Pacheco, M.A.C.
Flavio Joaquim de Souza
description This paper introduces the Inverted Hierarchical Neuro-Fuzzy BSP System (HNFB/sup -1/), a new neuro-fuzzy model that has been specifically created for record classification and rule extraction in databases. The HNFB/sup -1/ is based on the Hierarchical Neuro-Fuzzy Binary Space Partitioning Model (HNFB), which embodies a recursive partitioning of the input space, is able to automatically generate its own structure, and allows a greater number of inputs. The new HNFB/sup -1/ allows the extraction of knowledge in the form of interpretable fuzzy rules expressed by the following: If x is A and y is B, then input pattern belongs to class Z. For the process of rule extraction in the HNFB/sup -1/ model, two fuzzy evaluation measures were defined: 1) fuzzy accuracy and 2) fuzzy coverage. The HNFB/sup -1/ has been evaluated with different benchmark databases for the classification task: Iris Dataset, Wine Data, Pima Indians Diabetes Database, Bupa Liver Disorders, and Heart Disease. When compared with several other pattern classification models and algorithms, the HNFB/sup -1/ model has shown similar or better classification performance. Nevertheless, its performance in terms of processing time is remarkable. The HNFB/sup -1/ converged in less than one minute for all the databases described in the case study.
doi_str_mv 10.1109/TSMCC.2004.843220
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671343616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1624549</ieee_id><sourcerecordid>1671343616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-199369044bb89237940bec4e02e9b68b422280af33629fbe024099018bf3c5c3</originalsourceid><addsrcrecordid>eNqNkl9LHDEUxYfSQq32A5S-hILSl1nzfya-1aWtgtKC-x4y2RuMzCZrkpGur_3izbqC6IP06V7O_d1zCSdN84ngGSFYHS-uLufzGcWYz3rOKMVvmj0iRN9Szunb2mPFW6m67n3zIecbjAnniu01f8_DHaQCS3TtIZlkr701Iwowpdi66f5-g06vfqO8yQVWJ8igEO_g-XwVl1VxMaG1KQVSQHY0OXtXnYqPAZmwRGkaAcGfkox90HxAS1PMYDLkg-adM2OGj491v1n8-L6Yn7UXv36ez79dtJaTrrREKSYV5nwYekVZpzgewHLAFNQg-4FTSntsHGOSKjdUnWOlMOkHx6ywbL852tmuU7ydIBe98tnCOJoAccqa9vWA6MR_gFgI3JEKfn0VJLJCnEkiK_rlBXoTpxTqc3UvhVKVoxUiO8immHMCp9fJr0zaaIL1Nmb9ELPexqx3Mdedw0djk2tyLplgfX5a7DpKldxyn3ecB4CnsaRc1I_wDz4nsPU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865991342</pqid></control><display><type>article</type><title>Inverted hierarchical neuro-fuzzy BSP system: a novel neuro-fuzzy model for pattern classification and rule extraction in databases</title><source>IEEE Electronic Library (IEL)</source><creator>Goncalves, L.B. ; Vellasco, M.M.B.R. ; Pacheco, M.A.C. ; Flavio Joaquim de Souza</creator><creatorcontrib>Goncalves, L.B. ; Vellasco, M.M.B.R. ; Pacheco, M.A.C. ; Flavio Joaquim de Souza</creatorcontrib><description>This paper introduces the Inverted Hierarchical Neuro-Fuzzy BSP System (HNFB/sup -1/), a new neuro-fuzzy model that has been specifically created for record classification and rule extraction in databases. The HNFB/sup -1/ is based on the Hierarchical Neuro-Fuzzy Binary Space Partitioning Model (HNFB), which embodies a recursive partitioning of the input space, is able to automatically generate its own structure, and allows a greater number of inputs. The new HNFB/sup -1/ allows the extraction of knowledge in the form of interpretable fuzzy rules expressed by the following: If x is A and y is B, then input pattern belongs to class Z. For the process of rule extraction in the HNFB/sup -1/ model, two fuzzy evaluation measures were defined: 1) fuzzy accuracy and 2) fuzzy coverage. The HNFB/sup -1/ has been evaluated with different benchmark databases for the classification task: Iris Dataset, Wine Data, Pima Indians Diabetes Database, Bupa Liver Disorders, and Heart Disease. When compared with several other pattern classification models and algorithms, the HNFB/sup -1/ model has shown similar or better classification performance. Nevertheless, its performance in terms of processing time is remarkable. The HNFB/sup -1/ converged in less than one minute for all the databases described in the case study.</description><identifier>ISSN: 1094-6977</identifier><identifier>ISSN: 2168-2291</identifier><identifier>EISSN: 1558-2442</identifier><identifier>EISSN: 2168-2305</identifier><identifier>DOI: 10.1109/TSMCC.2004.843220</identifier><identifier>CODEN: ITCRFH</identifier><language>eng</language><publisher>New-York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Artificial neural networks ; Binary space partitioning (BSP) ; Cardiac disease ; Classification ; Classification algorithms ; Computer science; control theory; systems ; Data mining ; Diabetes ; Exact sciences and technology ; Extraction ; Fuzzy ; Fuzzy logic ; Fuzzy neural networks ; Fuzzy set theory ; Fuzzy sets ; Iris ; Liver ; Mathematical models ; Neural networks ; neuro-fuzzy systems ; Pattern classification ; Pattern recognition. Digital image processing. Computational geometry ; rule extraction ; Studies</subject><ispartof>IEEE transactions on human-machine systems, 2006-03, Vol.36 (2), p.236-248</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-199369044bb89237940bec4e02e9b68b422280af33629fbe024099018bf3c5c3</citedby><cites>FETCH-LOGICAL-c417t-199369044bb89237940bec4e02e9b68b422280af33629fbe024099018bf3c5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1624549$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1624549$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17722960$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Goncalves, L.B.</creatorcontrib><creatorcontrib>Vellasco, M.M.B.R.</creatorcontrib><creatorcontrib>Pacheco, M.A.C.</creatorcontrib><creatorcontrib>Flavio Joaquim de Souza</creatorcontrib><title>Inverted hierarchical neuro-fuzzy BSP system: a novel neuro-fuzzy model for pattern classification and rule extraction in databases</title><title>IEEE transactions on human-machine systems</title><addtitle>TSMCC</addtitle><description>This paper introduces the Inverted Hierarchical Neuro-Fuzzy BSP System (HNFB/sup -1/), a new neuro-fuzzy model that has been specifically created for record classification and rule extraction in databases. The HNFB/sup -1/ is based on the Hierarchical Neuro-Fuzzy Binary Space Partitioning Model (HNFB), which embodies a recursive partitioning of the input space, is able to automatically generate its own structure, and allows a greater number of inputs. The new HNFB/sup -1/ allows the extraction of knowledge in the form of interpretable fuzzy rules expressed by the following: If x is A and y is B, then input pattern belongs to class Z. For the process of rule extraction in the HNFB/sup -1/ model, two fuzzy evaluation measures were defined: 1) fuzzy accuracy and 2) fuzzy coverage. The HNFB/sup -1/ has been evaluated with different benchmark databases for the classification task: Iris Dataset, Wine Data, Pima Indians Diabetes Database, Bupa Liver Disorders, and Heart Disease. When compared with several other pattern classification models and algorithms, the HNFB/sup -1/ model has shown similar or better classification performance. Nevertheless, its performance in terms of processing time is remarkable. The HNFB/sup -1/ converged in less than one minute for all the databases described in the case study.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Binary space partitioning (BSP)</subject><subject>Cardiac disease</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Computer science; control theory; systems</subject><subject>Data mining</subject><subject>Diabetes</subject><subject>Exact sciences and technology</subject><subject>Extraction</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy neural networks</subject><subject>Fuzzy set theory</subject><subject>Fuzzy sets</subject><subject>Iris</subject><subject>Liver</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>neuro-fuzzy systems</subject><subject>Pattern classification</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>rule extraction</subject><subject>Studies</subject><issn>1094-6977</issn><issn>2168-2291</issn><issn>1558-2442</issn><issn>2168-2305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkl9LHDEUxYfSQq32A5S-hILSl1nzfya-1aWtgtKC-x4y2RuMzCZrkpGur_3izbqC6IP06V7O_d1zCSdN84ngGSFYHS-uLufzGcWYz3rOKMVvmj0iRN9Szunb2mPFW6m67n3zIecbjAnniu01f8_DHaQCS3TtIZlkr701Iwowpdi66f5-g06vfqO8yQVWJ8igEO_g-XwVl1VxMaG1KQVSQHY0OXtXnYqPAZmwRGkaAcGfkox90HxAS1PMYDLkg-adM2OGj491v1n8-L6Yn7UXv36ez79dtJaTrrREKSYV5nwYekVZpzgewHLAFNQg-4FTSntsHGOSKjdUnWOlMOkHx6ywbL852tmuU7ydIBe98tnCOJoAccqa9vWA6MR_gFgI3JEKfn0VJLJCnEkiK_rlBXoTpxTqc3UvhVKVoxUiO8immHMCp9fJr0zaaIL1Nmb9ELPexqx3Mdedw0djk2tyLplgfX5a7DpKldxyn3ecB4CnsaRc1I_wDz4nsPU</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Goncalves, L.B.</creator><creator>Vellasco, M.M.B.R.</creator><creator>Pacheco, M.A.C.</creator><creator>Flavio Joaquim de Souza</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>H8D</scope></search><sort><creationdate>20060301</creationdate><title>Inverted hierarchical neuro-fuzzy BSP system: a novel neuro-fuzzy model for pattern classification and rule extraction in databases</title><author>Goncalves, L.B. ; Vellasco, M.M.B.R. ; Pacheco, M.A.C. ; Flavio Joaquim de Souza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-199369044bb89237940bec4e02e9b68b422280af33629fbe024099018bf3c5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Binary space partitioning (BSP)</topic><topic>Cardiac disease</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Computer science; control theory; systems</topic><topic>Data mining</topic><topic>Diabetes</topic><topic>Exact sciences and technology</topic><topic>Extraction</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy neural networks</topic><topic>Fuzzy set theory</topic><topic>Fuzzy sets</topic><topic>Iris</topic><topic>Liver</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>neuro-fuzzy systems</topic><topic>Pattern classification</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>rule extraction</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goncalves, L.B.</creatorcontrib><creatorcontrib>Vellasco, M.M.B.R.</creatorcontrib><creatorcontrib>Pacheco, M.A.C.</creatorcontrib><creatorcontrib>Flavio Joaquim de Souza</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on human-machine systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goncalves, L.B.</au><au>Vellasco, M.M.B.R.</au><au>Pacheco, M.A.C.</au><au>Flavio Joaquim de Souza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverted hierarchical neuro-fuzzy BSP system: a novel neuro-fuzzy model for pattern classification and rule extraction in databases</atitle><jtitle>IEEE transactions on human-machine systems</jtitle><stitle>TSMCC</stitle><date>2006-03-01</date><risdate>2006</risdate><volume>36</volume><issue>2</issue><spage>236</spage><epage>248</epage><pages>236-248</pages><issn>1094-6977</issn><issn>2168-2291</issn><eissn>1558-2442</eissn><eissn>2168-2305</eissn><coden>ITCRFH</coden><abstract>This paper introduces the Inverted Hierarchical Neuro-Fuzzy BSP System (HNFB/sup -1/), a new neuro-fuzzy model that has been specifically created for record classification and rule extraction in databases. The HNFB/sup -1/ is based on the Hierarchical Neuro-Fuzzy Binary Space Partitioning Model (HNFB), which embodies a recursive partitioning of the input space, is able to automatically generate its own structure, and allows a greater number of inputs. The new HNFB/sup -1/ allows the extraction of knowledge in the form of interpretable fuzzy rules expressed by the following: If x is A and y is B, then input pattern belongs to class Z. For the process of rule extraction in the HNFB/sup -1/ model, two fuzzy evaluation measures were defined: 1) fuzzy accuracy and 2) fuzzy coverage. The HNFB/sup -1/ has been evaluated with different benchmark databases for the classification task: Iris Dataset, Wine Data, Pima Indians Diabetes Database, Bupa Liver Disorders, and Heart Disease. When compared with several other pattern classification models and algorithms, the HNFB/sup -1/ model has shown similar or better classification performance. Nevertheless, its performance in terms of processing time is remarkable. The HNFB/sup -1/ converged in less than one minute for all the databases described in the case study.</abstract><cop>New-York, NY</cop><pub>IEEE</pub><doi>10.1109/TSMCC.2004.843220</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-6977
ispartof IEEE transactions on human-machine systems, 2006-03, Vol.36 (2), p.236-248
issn 1094-6977
2168-2291
1558-2442
2168-2305
language eng
recordid cdi_proquest_miscellaneous_1671343616
source IEEE Electronic Library (IEL)
subjects Applied sciences
Artificial intelligence
Artificial neural networks
Binary space partitioning (BSP)
Cardiac disease
Classification
Classification algorithms
Computer science
control theory
systems
Data mining
Diabetes
Exact sciences and technology
Extraction
Fuzzy
Fuzzy logic
Fuzzy neural networks
Fuzzy set theory
Fuzzy sets
Iris
Liver
Mathematical models
Neural networks
neuro-fuzzy systems
Pattern classification
Pattern recognition. Digital image processing. Computational geometry
rule extraction
Studies
title Inverted hierarchical neuro-fuzzy BSP system: a novel neuro-fuzzy model for pattern classification and rule extraction in databases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A02%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverted%20hierarchical%20neuro-fuzzy%20BSP%20system:%20a%20novel%20neuro-fuzzy%20model%20for%20pattern%20classification%20and%20rule%20extraction%20in%20databases&rft.jtitle=IEEE%20transactions%20on%20human-machine%20systems&rft.au=Goncalves,%20L.B.&rft.date=2006-03-01&rft.volume=36&rft.issue=2&rft.spage=236&rft.epage=248&rft.pages=236-248&rft.issn=1094-6977&rft.eissn=1558-2442&rft.coden=ITCRFH&rft_id=info:doi/10.1109/TSMCC.2004.843220&rft_dat=%3Cproquest_RIE%3E1671343616%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865991342&rft_id=info:pmid/&rft_ieee_id=1624549&rfr_iscdi=true