Maintaining and checking parity in highly available Scalable Distributed Data Structures
Access to data stored in distributed main memory is much faster than access to local disks. Highly available, Scalable Distributed Data Structures (SDDS) utilize this fast access. They counteract the effects of failed or unavailable nodes by storing data redundantly. Since main memory per node is li...
Gespeichert in:
Veröffentlicht in: | The Journal of systems and software 2010-04, Vol.83 (4), p.529-542 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 542 |
---|---|
container_issue | 4 |
container_start_page | 529 |
container_title | The Journal of systems and software |
container_volume | 83 |
creator | Cieslicki, Damian Schaeckeler, Stefan Schwarz, Thomas |
description | Access to data stored in distributed main memory is much faster than access to local disks. Highly available, Scalable Distributed Data Structures (SDDS) utilize this fast access. They counteract the effects of failed or unavailable nodes by storing data redundantly. Since main memory per node is limited, they generate this redundancy by storing parity data calculated with erasure correcting codes instead of using replication. We present here a way to maintain parity that is about 10 times faster than using the traditional 2PC scheme. We also present a scheme that can diagnose a mismatch between parity and user data with very little network traffic. |
doi_str_mv | 10.1016/j.jss.2009.10.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671343332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0164121209002635</els_id><sourcerecordid>1970555351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-9b56fb7c9746fb51d7e83707e4c249da0a8dbb643ce0e284ad86bd1383d0a3603</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIHcLM4cUnwI01icULlKRVxKEjcLMfetg5pUmynUv8eR-HEgcNqZlczq91B6JKSlBKa39Rp7X3KCBGxTwnlR2hCy4InlLHyGE2iJoucslN05n1NCCkYYRP0-apsG2LZdo1Va7DegP4amp1yNhywbfHGrjfNAau9so2qGsBLrUZyb31wtuoDGHyvgsLL4Hodegf-HJ2sVOPh4hen6OPx4X3-nCzenl7md4tEcyJCIqpZvqoKLYos4oyaAkpekAIyzTJhFFGlqao84xoIsDJTpswrQ3nJDVE8J3yKrse9O9d99-CD3FqvoWlUC13vJc0LyjPOOYvSqz_SuutdG6-TjImciZkY9tFRpF3nvYOV3Dm7Ve4gKZFD1LKWMWo5RD2MYtTRczt6ID66t-Ck1xZaDcY60EGazv7j_gH_M4a9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>229629590</pqid></control><display><type>article</type><title>Maintaining and checking parity in highly available Scalable Distributed Data Structures</title><source>Elsevier ScienceDirect Journals</source><creator>Cieslicki, Damian ; Schaeckeler, Stefan ; Schwarz, Thomas</creator><creatorcontrib>Cieslicki, Damian ; Schaeckeler, Stefan ; Schwarz, Thomas</creatorcontrib><description>Access to data stored in distributed main memory is much faster than access to local disks. Highly available, Scalable Distributed Data Structures (SDDS) utilize this fast access. They counteract the effects of failed or unavailable nodes by storing data redundantly. Since main memory per node is limited, they generate this redundancy by storing parity data calculated with erasure correcting codes instead of using replication. We present here a way to maintain parity that is about 10 times faster than using the traditional 2PC scheme. We also present a scheme that can diagnose a mismatch between parity and user data with very little network traffic.</description><identifier>ISSN: 0164-1212</identifier><identifier>EISSN: 1873-1228</identifier><identifier>DOI: 10.1016/j.jss.2009.10.013</identifier><identifier>CODEN: JSSODM</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Availability ; Codes ; Computer programs ; Data structures ; Disks ; Mathematical analysis ; Parity ; Parity coherence ; Replication ; Scalability ; Scalable Distributed Data Structures ; Software ; Storage ; Studies ; Traffic flow</subject><ispartof>The Journal of systems and software, 2010-04, Vol.83 (4), p.529-542</ispartof><rights>2009 Elsevier Inc.</rights><rights>Copyright Elsevier Sequoia S.A. Apr 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-9b56fb7c9746fb51d7e83707e4c249da0a8dbb643ce0e284ad86bd1383d0a3603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0164121209002635$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Cieslicki, Damian</creatorcontrib><creatorcontrib>Schaeckeler, Stefan</creatorcontrib><creatorcontrib>Schwarz, Thomas</creatorcontrib><title>Maintaining and checking parity in highly available Scalable Distributed Data Structures</title><title>The Journal of systems and software</title><description>Access to data stored in distributed main memory is much faster than access to local disks. Highly available, Scalable Distributed Data Structures (SDDS) utilize this fast access. They counteract the effects of failed or unavailable nodes by storing data redundantly. Since main memory per node is limited, they generate this redundancy by storing parity data calculated with erasure correcting codes instead of using replication. We present here a way to maintain parity that is about 10 times faster than using the traditional 2PC scheme. We also present a scheme that can diagnose a mismatch between parity and user data with very little network traffic.</description><subject>Availability</subject><subject>Codes</subject><subject>Computer programs</subject><subject>Data structures</subject><subject>Disks</subject><subject>Mathematical analysis</subject><subject>Parity</subject><subject>Parity coherence</subject><subject>Replication</subject><subject>Scalability</subject><subject>Scalable Distributed Data Structures</subject><subject>Software</subject><subject>Storage</subject><subject>Studies</subject><subject>Traffic flow</subject><issn>0164-1212</issn><issn>1873-1228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIHcLM4cUnwI01icULlKRVxKEjcLMfetg5pUmynUv8eR-HEgcNqZlczq91B6JKSlBKa39Rp7X3KCBGxTwnlR2hCy4InlLHyGE2iJoucslN05n1NCCkYYRP0-apsG2LZdo1Va7DegP4amp1yNhywbfHGrjfNAau9so2qGsBLrUZyb31wtuoDGHyvgsLL4Hodegf-HJ2sVOPh4hen6OPx4X3-nCzenl7md4tEcyJCIqpZvqoKLYos4oyaAkpekAIyzTJhFFGlqao84xoIsDJTpswrQ3nJDVE8J3yKrse9O9d99-CD3FqvoWlUC13vJc0LyjPOOYvSqz_SuutdG6-TjImciZkY9tFRpF3nvYOV3Dm7Ve4gKZFD1LKWMWo5RD2MYtTRczt6ID66t-Ck1xZaDcY60EGazv7j_gH_M4a9</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Cieslicki, Damian</creator><creator>Schaeckeler, Stefan</creator><creator>Schwarz, Thomas</creator><general>Elsevier Inc</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100401</creationdate><title>Maintaining and checking parity in highly available Scalable Distributed Data Structures</title><author>Cieslicki, Damian ; Schaeckeler, Stefan ; Schwarz, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-9b56fb7c9746fb51d7e83707e4c249da0a8dbb643ce0e284ad86bd1383d0a3603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Availability</topic><topic>Codes</topic><topic>Computer programs</topic><topic>Data structures</topic><topic>Disks</topic><topic>Mathematical analysis</topic><topic>Parity</topic><topic>Parity coherence</topic><topic>Replication</topic><topic>Scalability</topic><topic>Scalable Distributed Data Structures</topic><topic>Software</topic><topic>Storage</topic><topic>Studies</topic><topic>Traffic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cieslicki, Damian</creatorcontrib><creatorcontrib>Schaeckeler, Stefan</creatorcontrib><creatorcontrib>Schwarz, Thomas</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The Journal of systems and software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cieslicki, Damian</au><au>Schaeckeler, Stefan</au><au>Schwarz, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maintaining and checking parity in highly available Scalable Distributed Data Structures</atitle><jtitle>The Journal of systems and software</jtitle><date>2010-04-01</date><risdate>2010</risdate><volume>83</volume><issue>4</issue><spage>529</spage><epage>542</epage><pages>529-542</pages><issn>0164-1212</issn><eissn>1873-1228</eissn><coden>JSSODM</coden><abstract>Access to data stored in distributed main memory is much faster than access to local disks. Highly available, Scalable Distributed Data Structures (SDDS) utilize this fast access. They counteract the effects of failed or unavailable nodes by storing data redundantly. Since main memory per node is limited, they generate this redundancy by storing parity data calculated with erasure correcting codes instead of using replication. We present here a way to maintain parity that is about 10 times faster than using the traditional 2PC scheme. We also present a scheme that can diagnose a mismatch between parity and user data with very little network traffic.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jss.2009.10.013</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0164-1212 |
ispartof | The Journal of systems and software, 2010-04, Vol.83 (4), p.529-542 |
issn | 0164-1212 1873-1228 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671343332 |
source | Elsevier ScienceDirect Journals |
subjects | Availability Codes Computer programs Data structures Disks Mathematical analysis Parity Parity coherence Replication Scalability Scalable Distributed Data Structures Software Storage Studies Traffic flow |
title | Maintaining and checking parity in highly available Scalable Distributed Data Structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A18%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maintaining%20and%20checking%20parity%20in%20highly%20available%20Scalable%20Distributed%20Data%20Structures&rft.jtitle=The%20Journal%20of%20systems%20and%20software&rft.au=Cieslicki,%20Damian&rft.date=2010-04-01&rft.volume=83&rft.issue=4&rft.spage=529&rft.epage=542&rft.pages=529-542&rft.issn=0164-1212&rft.eissn=1873-1228&rft.coden=JSSODM&rft_id=info:doi/10.1016/j.jss.2009.10.013&rft_dat=%3Cproquest_cross%3E1970555351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=229629590&rft_id=info:pmid/&rft_els_id=S0164121209002635&rfr_iscdi=true |