Maintaining and checking parity in highly available Scalable Distributed Data Structures

Access to data stored in distributed main memory is much faster than access to local disks. Highly available, Scalable Distributed Data Structures (SDDS) utilize this fast access. They counteract the effects of failed or unavailable nodes by storing data redundantly. Since main memory per node is li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of systems and software 2010-04, Vol.83 (4), p.529-542
Hauptverfasser: Cieslicki, Damian, Schaeckeler, Stefan, Schwarz, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 542
container_issue 4
container_start_page 529
container_title The Journal of systems and software
container_volume 83
creator Cieslicki, Damian
Schaeckeler, Stefan
Schwarz, Thomas
description Access to data stored in distributed main memory is much faster than access to local disks. Highly available, Scalable Distributed Data Structures (SDDS) utilize this fast access. They counteract the effects of failed or unavailable nodes by storing data redundantly. Since main memory per node is limited, they generate this redundancy by storing parity data calculated with erasure correcting codes instead of using replication. We present here a way to maintain parity that is about 10 times faster than using the traditional 2PC scheme. We also present a scheme that can diagnose a mismatch between parity and user data with very little network traffic.
doi_str_mv 10.1016/j.jss.2009.10.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671343332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0164121209002635</els_id><sourcerecordid>1970555351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-9b56fb7c9746fb51d7e83707e4c249da0a8dbb643ce0e284ad86bd1383d0a3603</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIHcLM4cUnwI01icULlKRVxKEjcLMfetg5pUmynUv8eR-HEgcNqZlczq91B6JKSlBKa39Rp7X3KCBGxTwnlR2hCy4InlLHyGE2iJoucslN05n1NCCkYYRP0-apsG2LZdo1Va7DegP4amp1yNhywbfHGrjfNAau9so2qGsBLrUZyb31wtuoDGHyvgsLL4Hodegf-HJ2sVOPh4hen6OPx4X3-nCzenl7md4tEcyJCIqpZvqoKLYos4oyaAkpekAIyzTJhFFGlqao84xoIsDJTpswrQ3nJDVE8J3yKrse9O9d99-CD3FqvoWlUC13vJc0LyjPOOYvSqz_SuutdG6-TjImciZkY9tFRpF3nvYOV3Dm7Ve4gKZFD1LKWMWo5RD2MYtTRczt6ID66t-Ck1xZaDcY60EGazv7j_gH_M4a9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>229629590</pqid></control><display><type>article</type><title>Maintaining and checking parity in highly available Scalable Distributed Data Structures</title><source>Elsevier ScienceDirect Journals</source><creator>Cieslicki, Damian ; Schaeckeler, Stefan ; Schwarz, Thomas</creator><creatorcontrib>Cieslicki, Damian ; Schaeckeler, Stefan ; Schwarz, Thomas</creatorcontrib><description>Access to data stored in distributed main memory is much faster than access to local disks. Highly available, Scalable Distributed Data Structures (SDDS) utilize this fast access. They counteract the effects of failed or unavailable nodes by storing data redundantly. Since main memory per node is limited, they generate this redundancy by storing parity data calculated with erasure correcting codes instead of using replication. We present here a way to maintain parity that is about 10 times faster than using the traditional 2PC scheme. We also present a scheme that can diagnose a mismatch between parity and user data with very little network traffic.</description><identifier>ISSN: 0164-1212</identifier><identifier>EISSN: 1873-1228</identifier><identifier>DOI: 10.1016/j.jss.2009.10.013</identifier><identifier>CODEN: JSSODM</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Availability ; Codes ; Computer programs ; Data structures ; Disks ; Mathematical analysis ; Parity ; Parity coherence ; Replication ; Scalability ; Scalable Distributed Data Structures ; Software ; Storage ; Studies ; Traffic flow</subject><ispartof>The Journal of systems and software, 2010-04, Vol.83 (4), p.529-542</ispartof><rights>2009 Elsevier Inc.</rights><rights>Copyright Elsevier Sequoia S.A. Apr 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-9b56fb7c9746fb51d7e83707e4c249da0a8dbb643ce0e284ad86bd1383d0a3603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0164121209002635$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Cieslicki, Damian</creatorcontrib><creatorcontrib>Schaeckeler, Stefan</creatorcontrib><creatorcontrib>Schwarz, Thomas</creatorcontrib><title>Maintaining and checking parity in highly available Scalable Distributed Data Structures</title><title>The Journal of systems and software</title><description>Access to data stored in distributed main memory is much faster than access to local disks. Highly available, Scalable Distributed Data Structures (SDDS) utilize this fast access. They counteract the effects of failed or unavailable nodes by storing data redundantly. Since main memory per node is limited, they generate this redundancy by storing parity data calculated with erasure correcting codes instead of using replication. We present here a way to maintain parity that is about 10 times faster than using the traditional 2PC scheme. We also present a scheme that can diagnose a mismatch between parity and user data with very little network traffic.</description><subject>Availability</subject><subject>Codes</subject><subject>Computer programs</subject><subject>Data structures</subject><subject>Disks</subject><subject>Mathematical analysis</subject><subject>Parity</subject><subject>Parity coherence</subject><subject>Replication</subject><subject>Scalability</subject><subject>Scalable Distributed Data Structures</subject><subject>Software</subject><subject>Storage</subject><subject>Studies</subject><subject>Traffic flow</subject><issn>0164-1212</issn><issn>1873-1228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIHcLM4cUnwI01icULlKRVxKEjcLMfetg5pUmynUv8eR-HEgcNqZlczq91B6JKSlBKa39Rp7X3KCBGxTwnlR2hCy4InlLHyGE2iJoucslN05n1NCCkYYRP0-apsG2LZdo1Va7DegP4amp1yNhywbfHGrjfNAau9so2qGsBLrUZyb31wtuoDGHyvgsLL4Hodegf-HJ2sVOPh4hen6OPx4X3-nCzenl7md4tEcyJCIqpZvqoKLYos4oyaAkpekAIyzTJhFFGlqao84xoIsDJTpswrQ3nJDVE8J3yKrse9O9d99-CD3FqvoWlUC13vJc0LyjPOOYvSqz_SuutdG6-TjImciZkY9tFRpF3nvYOV3Dm7Ve4gKZFD1LKWMWo5RD2MYtTRczt6ID66t-Ck1xZaDcY60EGazv7j_gH_M4a9</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Cieslicki, Damian</creator><creator>Schaeckeler, Stefan</creator><creator>Schwarz, Thomas</creator><general>Elsevier Inc</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100401</creationdate><title>Maintaining and checking parity in highly available Scalable Distributed Data Structures</title><author>Cieslicki, Damian ; Schaeckeler, Stefan ; Schwarz, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-9b56fb7c9746fb51d7e83707e4c249da0a8dbb643ce0e284ad86bd1383d0a3603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Availability</topic><topic>Codes</topic><topic>Computer programs</topic><topic>Data structures</topic><topic>Disks</topic><topic>Mathematical analysis</topic><topic>Parity</topic><topic>Parity coherence</topic><topic>Replication</topic><topic>Scalability</topic><topic>Scalable Distributed Data Structures</topic><topic>Software</topic><topic>Storage</topic><topic>Studies</topic><topic>Traffic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cieslicki, Damian</creatorcontrib><creatorcontrib>Schaeckeler, Stefan</creatorcontrib><creatorcontrib>Schwarz, Thomas</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The Journal of systems and software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cieslicki, Damian</au><au>Schaeckeler, Stefan</au><au>Schwarz, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maintaining and checking parity in highly available Scalable Distributed Data Structures</atitle><jtitle>The Journal of systems and software</jtitle><date>2010-04-01</date><risdate>2010</risdate><volume>83</volume><issue>4</issue><spage>529</spage><epage>542</epage><pages>529-542</pages><issn>0164-1212</issn><eissn>1873-1228</eissn><coden>JSSODM</coden><abstract>Access to data stored in distributed main memory is much faster than access to local disks. Highly available, Scalable Distributed Data Structures (SDDS) utilize this fast access. They counteract the effects of failed or unavailable nodes by storing data redundantly. Since main memory per node is limited, they generate this redundancy by storing parity data calculated with erasure correcting codes instead of using replication. We present here a way to maintain parity that is about 10 times faster than using the traditional 2PC scheme. We also present a scheme that can diagnose a mismatch between parity and user data with very little network traffic.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jss.2009.10.013</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0164-1212
ispartof The Journal of systems and software, 2010-04, Vol.83 (4), p.529-542
issn 0164-1212
1873-1228
language eng
recordid cdi_proquest_miscellaneous_1671343332
source Elsevier ScienceDirect Journals
subjects Availability
Codes
Computer programs
Data structures
Disks
Mathematical analysis
Parity
Parity coherence
Replication
Scalability
Scalable Distributed Data Structures
Software
Storage
Studies
Traffic flow
title Maintaining and checking parity in highly available Scalable Distributed Data Structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A18%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maintaining%20and%20checking%20parity%20in%20highly%20available%20Scalable%20Distributed%20Data%20Structures&rft.jtitle=The%20Journal%20of%20systems%20and%20software&rft.au=Cieslicki,%20Damian&rft.date=2010-04-01&rft.volume=83&rft.issue=4&rft.spage=529&rft.epage=542&rft.pages=529-542&rft.issn=0164-1212&rft.eissn=1873-1228&rft.coden=JSSODM&rft_id=info:doi/10.1016/j.jss.2009.10.013&rft_dat=%3Cproquest_cross%3E1970555351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=229629590&rft_id=info:pmid/&rft_els_id=S0164121209002635&rfr_iscdi=true