Synthesis of silver-zeolite films on micropatterned porous alumina and its application as an antimicrobial substrate

In this study, we focus on synthesis of patterned-zeolite films and the potential application of a silver-derived form of this film as a biocidal agent. The synthetic strategy has been to develop a patterned porous alumina substrate using soft lithographic methods. These patterns have dimensions in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microporous and mesoporous materials 2010-11, Vol.135 (1), p.131-136
Hauptverfasser: Sabbani, Supriya, Gallego-Perez, Daniel, Nagy, Amber, James Waldman, W., Hansford, Derek, Dutta, Prabir K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue 1
container_start_page 131
container_title Microporous and mesoporous materials
container_volume 135
creator Sabbani, Supriya
Gallego-Perez, Daniel
Nagy, Amber
James Waldman, W.
Hansford, Derek
Dutta, Prabir K.
description In this study, we focus on synthesis of patterned-zeolite films and the potential application of a silver-derived form of this film as a biocidal agent. The synthetic strategy has been to develop a patterned porous alumina substrate using soft lithographic methods. These patterns have dimensions in the range of 5–100 μ. Previously patterned PDMS and PMMA molds were used to define surface microfeatures on the alumina supports. Zeolite films (2–3 μ) were then grown on the alumina using a seeding process followed by secondary growth. Electron microscopy showed that the zeolite film followed the pattern of the alumina substrate. Silver nanoparticles were grown on the surface of the zeolite film by reduction of the Ag + – exchanged zeolite with aqueous hydrazine. The antimicrobial properties of the patterned-zeolite films were successfully demonstrated using Escherichia coli bacteria as the model system, complete bacteria eradication was noted within 120 min. Such patterned-zeolite films can be incorporated into a variety of systems, including fabrics, biomaterials, filters and thus can serve a wide range of uses.
doi_str_mv 10.1016/j.micromeso.2010.06.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671342487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1387181110002210</els_id><sourcerecordid>1671342487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-336349fb3a47098c1b16030334d38c50aa19357983ff299848d29f0cb4bc80193</originalsourceid><addsrcrecordid>eNqFkEFvFSEUhYnRxPr0N8jGxM08uTBvBpZNo9WkSRfVNWGYS7wvDDMCr0n99dK-pls3wL2cw-F-jH0EsQcBw5fjfiGf1wXLupeidcWwF1K8YhegR9UpYdTrdlZ67EADvGXvSjkKASNIuGD17iHV31io8DXwQvEec_cX10gVeaC4tH7iTwmbqxVzwplva15Phbt4Wig57tLMqbZ62yJ5V6k5XCvbmio9eSdykZfTVGp2Fd-zN8HFgh-e9x379e3rz6vv3c3t9Y-ry5vO92Bqp9SgehMm5fpRGO1hgkEooVQ_K-0Pwjkw6jAarUKQxuhez9IE4ad-8lq0ux37fH53y-ufE5ZqFyoeY3QJ2wAWhhFUL_vGacfGs7R9tpSMwW6ZFpcfLAj7yNke7Qtn-8jZisE2zs356TnEFe9iyC55Ki92qSTIYTg03eVZh23ie8JsiydMHmfK6KudV_pv1j_x1JmU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671342487</pqid></control><display><type>article</type><title>Synthesis of silver-zeolite films on micropatterned porous alumina and its application as an antimicrobial substrate</title><source>Elsevier ScienceDirect Journals</source><creator>Sabbani, Supriya ; Gallego-Perez, Daniel ; Nagy, Amber ; James Waldman, W. ; Hansford, Derek ; Dutta, Prabir K.</creator><creatorcontrib>Sabbani, Supriya ; Gallego-Perez, Daniel ; Nagy, Amber ; James Waldman, W. ; Hansford, Derek ; Dutta, Prabir K.</creatorcontrib><description>In this study, we focus on synthesis of patterned-zeolite films and the potential application of a silver-derived form of this film as a biocidal agent. The synthetic strategy has been to develop a patterned porous alumina substrate using soft lithographic methods. These patterns have dimensions in the range of 5–100 μ. Previously patterned PDMS and PMMA molds were used to define surface microfeatures on the alumina supports. Zeolite films (2–3 μ) were then grown on the alumina using a seeding process followed by secondary growth. Electron microscopy showed that the zeolite film followed the pattern of the alumina substrate. Silver nanoparticles were grown on the surface of the zeolite film by reduction of the Ag + – exchanged zeolite with aqueous hydrazine. The antimicrobial properties of the patterned-zeolite films were successfully demonstrated using Escherichia coli bacteria as the model system, complete bacteria eradication was noted within 120 min. Such patterned-zeolite films can be incorporated into a variety of systems, including fabrics, biomaterials, filters and thus can serve a wide range of uses.</description><identifier>ISSN: 1387-1811</identifier><identifier>EISSN: 1873-3093</identifier><identifier>DOI: 10.1016/j.micromeso.2010.06.020</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Alumina membrane ; Aluminum oxide ; Antibacterial ; Bacteria ; Chemistry ; Colloidal state and disperse state ; Exact sciences and technology ; General and physical chemistry ; Ion-exchange ; Membranes ; Micropatterning ; Molds ; Nucleation ; Patterned membranes ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Polymethyl methacrylates ; Porous materials ; Reduction ; Silver ; Soft lithography ; Surface physical chemistry ; Synthesis ; Zeolites ; Zeolites: preparations and properties</subject><ispartof>Microporous and mesoporous materials, 2010-11, Vol.135 (1), p.131-136</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-336349fb3a47098c1b16030334d38c50aa19357983ff299848d29f0cb4bc80193</citedby><cites>FETCH-LOGICAL-c419t-336349fb3a47098c1b16030334d38c50aa19357983ff299848d29f0cb4bc80193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1387181110002210$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23212665$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sabbani, Supriya</creatorcontrib><creatorcontrib>Gallego-Perez, Daniel</creatorcontrib><creatorcontrib>Nagy, Amber</creatorcontrib><creatorcontrib>James Waldman, W.</creatorcontrib><creatorcontrib>Hansford, Derek</creatorcontrib><creatorcontrib>Dutta, Prabir K.</creatorcontrib><title>Synthesis of silver-zeolite films on micropatterned porous alumina and its application as an antimicrobial substrate</title><title>Microporous and mesoporous materials</title><description>In this study, we focus on synthesis of patterned-zeolite films and the potential application of a silver-derived form of this film as a biocidal agent. The synthetic strategy has been to develop a patterned porous alumina substrate using soft lithographic methods. These patterns have dimensions in the range of 5–100 μ. Previously patterned PDMS and PMMA molds were used to define surface microfeatures on the alumina supports. Zeolite films (2–3 μ) were then grown on the alumina using a seeding process followed by secondary growth. Electron microscopy showed that the zeolite film followed the pattern of the alumina substrate. Silver nanoparticles were grown on the surface of the zeolite film by reduction of the Ag + – exchanged zeolite with aqueous hydrazine. The antimicrobial properties of the patterned-zeolite films were successfully demonstrated using Escherichia coli bacteria as the model system, complete bacteria eradication was noted within 120 min. Such patterned-zeolite films can be incorporated into a variety of systems, including fabrics, biomaterials, filters and thus can serve a wide range of uses.</description><subject>Alumina membrane</subject><subject>Aluminum oxide</subject><subject>Antibacterial</subject><subject>Bacteria</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Ion-exchange</subject><subject>Membranes</subject><subject>Micropatterning</subject><subject>Molds</subject><subject>Nucleation</subject><subject>Patterned membranes</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Polymethyl methacrylates</subject><subject>Porous materials</subject><subject>Reduction</subject><subject>Silver</subject><subject>Soft lithography</subject><subject>Surface physical chemistry</subject><subject>Synthesis</subject><subject>Zeolites</subject><subject>Zeolites: preparations and properties</subject><issn>1387-1811</issn><issn>1873-3093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkEFvFSEUhYnRxPr0N8jGxM08uTBvBpZNo9WkSRfVNWGYS7wvDDMCr0n99dK-pls3wL2cw-F-jH0EsQcBw5fjfiGf1wXLupeidcWwF1K8YhegR9UpYdTrdlZ67EADvGXvSjkKASNIuGD17iHV31io8DXwQvEec_cX10gVeaC4tH7iTwmbqxVzwplva15Phbt4Wig57tLMqbZ62yJ5V6k5XCvbmio9eSdykZfTVGp2Fd-zN8HFgh-e9x379e3rz6vv3c3t9Y-ry5vO92Bqp9SgehMm5fpRGO1hgkEooVQ_K-0Pwjkw6jAarUKQxuhez9IE4ad-8lq0ux37fH53y-ufE5ZqFyoeY3QJ2wAWhhFUL_vGacfGs7R9tpSMwW6ZFpcfLAj7yNke7Qtn-8jZisE2zs356TnEFe9iyC55Ki92qSTIYTg03eVZh23ie8JsiydMHmfK6KudV_pv1j_x1JmU</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Sabbani, Supriya</creator><creator>Gallego-Perez, Daniel</creator><creator>Nagy, Amber</creator><creator>James Waldman, W.</creator><creator>Hansford, Derek</creator><creator>Dutta, Prabir K.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20101101</creationdate><title>Synthesis of silver-zeolite films on micropatterned porous alumina and its application as an antimicrobial substrate</title><author>Sabbani, Supriya ; Gallego-Perez, Daniel ; Nagy, Amber ; James Waldman, W. ; Hansford, Derek ; Dutta, Prabir K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-336349fb3a47098c1b16030334d38c50aa19357983ff299848d29f0cb4bc80193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alumina membrane</topic><topic>Aluminum oxide</topic><topic>Antibacterial</topic><topic>Bacteria</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Ion-exchange</topic><topic>Membranes</topic><topic>Micropatterning</topic><topic>Molds</topic><topic>Nucleation</topic><topic>Patterned membranes</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Polymethyl methacrylates</topic><topic>Porous materials</topic><topic>Reduction</topic><topic>Silver</topic><topic>Soft lithography</topic><topic>Surface physical chemistry</topic><topic>Synthesis</topic><topic>Zeolites</topic><topic>Zeolites: preparations and properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabbani, Supriya</creatorcontrib><creatorcontrib>Gallego-Perez, Daniel</creatorcontrib><creatorcontrib>Nagy, Amber</creatorcontrib><creatorcontrib>James Waldman, W.</creatorcontrib><creatorcontrib>Hansford, Derek</creatorcontrib><creatorcontrib>Dutta, Prabir K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microporous and mesoporous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabbani, Supriya</au><au>Gallego-Perez, Daniel</au><au>Nagy, Amber</au><au>James Waldman, W.</au><au>Hansford, Derek</au><au>Dutta, Prabir K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of silver-zeolite films on micropatterned porous alumina and its application as an antimicrobial substrate</atitle><jtitle>Microporous and mesoporous materials</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>135</volume><issue>1</issue><spage>131</spage><epage>136</epage><pages>131-136</pages><issn>1387-1811</issn><eissn>1873-3093</eissn><abstract>In this study, we focus on synthesis of patterned-zeolite films and the potential application of a silver-derived form of this film as a biocidal agent. The synthetic strategy has been to develop a patterned porous alumina substrate using soft lithographic methods. These patterns have dimensions in the range of 5–100 μ. Previously patterned PDMS and PMMA molds were used to define surface microfeatures on the alumina supports. Zeolite films (2–3 μ) were then grown on the alumina using a seeding process followed by secondary growth. Electron microscopy showed that the zeolite film followed the pattern of the alumina substrate. Silver nanoparticles were grown on the surface of the zeolite film by reduction of the Ag + – exchanged zeolite with aqueous hydrazine. The antimicrobial properties of the patterned-zeolite films were successfully demonstrated using Escherichia coli bacteria as the model system, complete bacteria eradication was noted within 120 min. Such patterned-zeolite films can be incorporated into a variety of systems, including fabrics, biomaterials, filters and thus can serve a wide range of uses.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1016/j.micromeso.2010.06.020</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1387-1811
ispartof Microporous and mesoporous materials, 2010-11, Vol.135 (1), p.131-136
issn 1387-1811
1873-3093
language eng
recordid cdi_proquest_miscellaneous_1671342487
source Elsevier ScienceDirect Journals
subjects Alumina membrane
Aluminum oxide
Antibacterial
Bacteria
Chemistry
Colloidal state and disperse state
Exact sciences and technology
General and physical chemistry
Ion-exchange
Membranes
Micropatterning
Molds
Nucleation
Patterned membranes
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Polymethyl methacrylates
Porous materials
Reduction
Silver
Soft lithography
Surface physical chemistry
Synthesis
Zeolites
Zeolites: preparations and properties
title Synthesis of silver-zeolite films on micropatterned porous alumina and its application as an antimicrobial substrate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A14%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20silver-zeolite%20films%20on%20micropatterned%20porous%20alumina%20and%20its%20application%20as%20an%20antimicrobial%20substrate&rft.jtitle=Microporous%20and%20mesoporous%20materials&rft.au=Sabbani,%20Supriya&rft.date=2010-11-01&rft.volume=135&rft.issue=1&rft.spage=131&rft.epage=136&rft.pages=131-136&rft.issn=1387-1811&rft.eissn=1873-3093&rft_id=info:doi/10.1016/j.micromeso.2010.06.020&rft_dat=%3Cproquest_cross%3E1671342487%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671342487&rft_id=info:pmid/&rft_els_id=S1387181110002210&rfr_iscdi=true