Least trace extended set-membership filter

To improve the consistency of estimation result, a least-trace extended set-membership filter (LTESMF) is presented for a class of nonlinear stochastic systems, which has linear output and unknown- but-bounded noise. Feedback technique is used instead of the intersection of ellipsoid-sets in the mea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China Information Sciences 2010-02, Vol.53 (2), p.258-270
Hauptverfasser: Huang, Yi, Chen, ZongJi, Wei, Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 270
container_issue 2
container_start_page 258
container_title Science China Information Sciences
container_volume 53
creator Huang, Yi
Chen, ZongJi
Wei, Chen
description To improve the consistency of estimation result, a least-trace extended set-membership filter (LTESMF) is presented for a class of nonlinear stochastic systems, which has linear output and unknown- but-bounded noise. Feedback technique is used instead of the intersection of ellipsoid-sets in the measurement update. The feedback parameter is optimized in order to minimize the trace of error bounded ellipsoid's envelop matrix. A new stability analysis method was developed to prove the stochastic system's stability by using the convergence of some measurement of the error bounded ellipsoid. Analysis result shows that the estimation error of LTESMF will converge to a bounded area. A simulation of SINS/GPS integrated alignment with large misalignment angles is conducted. The results demonstrate that the convergence speed and the consistency of LTESMF are much better than those of extended Kalman filter (EKF), in addition the steady estimation precision and computational complexity are close to that of EKF.
doi_str_mv 10.1007/s11432-010-0024-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671341345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>33054180</cqvip_id><sourcerecordid>1671341345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-ff59a2654808ff69514ac476d832184ae310d590c6be8e88ba972994b5e707f13</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsNT-AG-LXkSIZvKxSY5S_IKCFwVvIbs7227djzbZQv33pmxB8GAYSA7PO5N5kuQS6B1Qqu4DgOCMUKCEUibI_iSZgM4MAQPmNL4zJYji_PM8mYWwpvFwTpnSk-R2gS4M6eBdgSnuB-xKLNOAA2mxzdGHVb1Jq7oZ0F8kZ5VrAs6O9zT5eHp8n7-Qxdvz6_xhQQqusoFUlTSOZVJoqqsqMxKEK4TKSs0ZaOGQAy2loUWWo0atc2cUM0bkEhVVFfBpcjP23fh-u8Mw2LYOBTaN67DfBRu3AS5iyYhe_0HX_c538XeWmWiASQ1ZpGCkCt-H4LGyG1-3zn9boPYg0I4CbRRoDwLtPmbYmAmR7Zbofzv_F7o6Dlr13XIbczZ3xVfUhzYKlwI05T9ZH3vq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918625816</pqid></control><display><type>article</type><title>Least trace extended set-membership filter</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Huang, Yi ; Chen, ZongJi ; Wei, Chen</creator><creatorcontrib>Huang, Yi ; Chen, ZongJi ; Wei, Chen</creatorcontrib><description>To improve the consistency of estimation result, a least-trace extended set-membership filter (LTESMF) is presented for a class of nonlinear stochastic systems, which has linear output and unknown- but-bounded noise. Feedback technique is used instead of the intersection of ellipsoid-sets in the measurement update. The feedback parameter is optimized in order to minimize the trace of error bounded ellipsoid's envelop matrix. A new stability analysis method was developed to prove the stochastic system's stability by using the convergence of some measurement of the error bounded ellipsoid. Analysis result shows that the estimation error of LTESMF will converge to a bounded area. A simulation of SINS/GPS integrated alignment with large misalignment angles is conducted. The results demonstrate that the convergence speed and the consistency of LTESMF are much better than those of extended Kalman filter (EKF), in addition the steady estimation precision and computational complexity are close to that of EKF.</description><identifier>ISSN: 1674-733X</identifier><identifier>EISSN: 1869-1919</identifier><identifier>EISSN: 1862-2836</identifier><identifier>DOI: 10.1007/s11432-010-0024-x</identifier><language>eng</language><publisher>Heidelberg: SP Science in China Press</publisher><subject>Computer Science ; Computer simulation ; Consistency ; Convergence ; Error analysis ; Extended Kalman filter ; Feedback ; Geographic information systems ; Global Positioning System ; Information Systems and Communication Service ; Misalignment ; Noise (mathematics) ; Nonlinear systems ; Research Papers ; Satellite navigation systems ; Stability analysis ; Stochastic systems ; 扩展卡尔曼滤波 ; 收敛速度 ; 测量系统 ; 稳定分析方法 ; 错误跟踪 ; 非线性随机系统</subject><ispartof>Science China Information Sciences, 2010-02, Vol.53 (2), p.258-270</ispartof><rights>Science in China Press and Springer Berlin Heidelberg 2010</rights><rights>Science in China Press and Springer Berlin Heidelberg 2010.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-ff59a2654808ff69514ac476d832184ae310d590c6be8e88ba972994b5e707f13</citedby><cites>FETCH-LOGICAL-c376t-ff59a2654808ff69514ac476d832184ae310d590c6be8e88ba972994b5e707f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84009A/84009A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11432-010-0024-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918625816?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21393,27929,27930,33749,33750,41493,42562,43810,51324,64390,64392,64394,72474</link.rule.ids></links><search><creatorcontrib>Huang, Yi</creatorcontrib><creatorcontrib>Chen, ZongJi</creatorcontrib><creatorcontrib>Wei, Chen</creatorcontrib><title>Least trace extended set-membership filter</title><title>Science China Information Sciences</title><addtitle>Sci. China Inf. Sci</addtitle><addtitle>SCIENCE CHINA Information Sciences</addtitle><description>To improve the consistency of estimation result, a least-trace extended set-membership filter (LTESMF) is presented for a class of nonlinear stochastic systems, which has linear output and unknown- but-bounded noise. Feedback technique is used instead of the intersection of ellipsoid-sets in the measurement update. The feedback parameter is optimized in order to minimize the trace of error bounded ellipsoid's envelop matrix. A new stability analysis method was developed to prove the stochastic system's stability by using the convergence of some measurement of the error bounded ellipsoid. Analysis result shows that the estimation error of LTESMF will converge to a bounded area. A simulation of SINS/GPS integrated alignment with large misalignment angles is conducted. The results demonstrate that the convergence speed and the consistency of LTESMF are much better than those of extended Kalman filter (EKF), in addition the steady estimation precision and computational complexity are close to that of EKF.</description><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Consistency</subject><subject>Convergence</subject><subject>Error analysis</subject><subject>Extended Kalman filter</subject><subject>Feedback</subject><subject>Geographic information systems</subject><subject>Global Positioning System</subject><subject>Information Systems and Communication Service</subject><subject>Misalignment</subject><subject>Noise (mathematics)</subject><subject>Nonlinear systems</subject><subject>Research Papers</subject><subject>Satellite navigation systems</subject><subject>Stability analysis</subject><subject>Stochastic systems</subject><subject>扩展卡尔曼滤波</subject><subject>收敛速度</subject><subject>测量系统</subject><subject>稳定分析方法</subject><subject>错误跟踪</subject><subject>非线性随机系统</subject><issn>1674-733X</issn><issn>1869-1919</issn><issn>1862-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhhdRsNT-AG-LXkSIZvKxSY5S_IKCFwVvIbs7227djzbZQv33pmxB8GAYSA7PO5N5kuQS6B1Qqu4DgOCMUKCEUibI_iSZgM4MAQPmNL4zJYji_PM8mYWwpvFwTpnSk-R2gS4M6eBdgSnuB-xKLNOAA2mxzdGHVb1Jq7oZ0F8kZ5VrAs6O9zT5eHp8n7-Qxdvz6_xhQQqusoFUlTSOZVJoqqsqMxKEK4TKSs0ZaOGQAy2loUWWo0atc2cUM0bkEhVVFfBpcjP23fh-u8Mw2LYOBTaN67DfBRu3AS5iyYhe_0HX_c538XeWmWiASQ1ZpGCkCt-H4LGyG1-3zn9boPYg0I4CbRRoDwLtPmbYmAmR7Zbofzv_F7o6Dlr13XIbczZ3xVfUhzYKlwI05T9ZH3vq</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Huang, Yi</creator><creator>Chen, ZongJi</creator><creator>Wei, Chen</creator><general>SP Science in China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100201</creationdate><title>Least trace extended set-membership filter</title><author>Huang, Yi ; Chen, ZongJi ; Wei, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-ff59a2654808ff69514ac476d832184ae310d590c6be8e88ba972994b5e707f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Consistency</topic><topic>Convergence</topic><topic>Error analysis</topic><topic>Extended Kalman filter</topic><topic>Feedback</topic><topic>Geographic information systems</topic><topic>Global Positioning System</topic><topic>Information Systems and Communication Service</topic><topic>Misalignment</topic><topic>Noise (mathematics)</topic><topic>Nonlinear systems</topic><topic>Research Papers</topic><topic>Satellite navigation systems</topic><topic>Stability analysis</topic><topic>Stochastic systems</topic><topic>扩展卡尔曼滤波</topic><topic>收敛速度</topic><topic>测量系统</topic><topic>稳定分析方法</topic><topic>错误跟踪</topic><topic>非线性随机系统</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yi</creatorcontrib><creatorcontrib>Chen, ZongJi</creatorcontrib><creatorcontrib>Wei, Chen</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Science China Information Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yi</au><au>Chen, ZongJi</au><au>Wei, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Least trace extended set-membership filter</atitle><jtitle>Science China Information Sciences</jtitle><stitle>Sci. China Inf. Sci</stitle><addtitle>SCIENCE CHINA Information Sciences</addtitle><date>2010-02-01</date><risdate>2010</risdate><volume>53</volume><issue>2</issue><spage>258</spage><epage>270</epage><pages>258-270</pages><issn>1674-733X</issn><eissn>1869-1919</eissn><eissn>1862-2836</eissn><abstract>To improve the consistency of estimation result, a least-trace extended set-membership filter (LTESMF) is presented for a class of nonlinear stochastic systems, which has linear output and unknown- but-bounded noise. Feedback technique is used instead of the intersection of ellipsoid-sets in the measurement update. The feedback parameter is optimized in order to minimize the trace of error bounded ellipsoid's envelop matrix. A new stability analysis method was developed to prove the stochastic system's stability by using the convergence of some measurement of the error bounded ellipsoid. Analysis result shows that the estimation error of LTESMF will converge to a bounded area. A simulation of SINS/GPS integrated alignment with large misalignment angles is conducted. The results demonstrate that the convergence speed and the consistency of LTESMF are much better than those of extended Kalman filter (EKF), in addition the steady estimation precision and computational complexity are close to that of EKF.</abstract><cop>Heidelberg</cop><pub>SP Science in China Press</pub><doi>10.1007/s11432-010-0024-x</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-733X
ispartof Science China Information Sciences, 2010-02, Vol.53 (2), p.258-270
issn 1674-733X
1869-1919
1862-2836
language eng
recordid cdi_proquest_miscellaneous_1671341345
source SpringerNature Journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central
subjects Computer Science
Computer simulation
Consistency
Convergence
Error analysis
Extended Kalman filter
Feedback
Geographic information systems
Global Positioning System
Information Systems and Communication Service
Misalignment
Noise (mathematics)
Nonlinear systems
Research Papers
Satellite navigation systems
Stability analysis
Stochastic systems
扩展卡尔曼滤波
收敛速度
测量系统
稳定分析方法
错误跟踪
非线性随机系统
title Least trace extended set-membership filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T13%3A16%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Least%20trace%20extended%20set-membership%20filter&rft.jtitle=Science%20China%20Information%20Sciences&rft.au=Huang,%20Yi&rft.date=2010-02-01&rft.volume=53&rft.issue=2&rft.spage=258&rft.epage=270&rft.pages=258-270&rft.issn=1674-733X&rft.eissn=1869-1919&rft_id=info:doi/10.1007/s11432-010-0024-x&rft_dat=%3Cproquest_cross%3E1671341345%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918625816&rft_id=info:pmid/&rft_cqvip_id=33054180&rfr_iscdi=true