Technique of Formation of an Axisymmetric Heterogeneous Flow During Thermal Spraying of Powder Materials
The paper presents an investigation of a unit of annular injection of powder materials into a thermal plasma flow. The unit is designed for the electric-arc direct-current plasma torch with a sectioned inter-electrode insert up to 100 kW, which was developed earlier. Energy characteristics (thermal...
Gespeichert in:
Veröffentlicht in: | Journal of thermal spray technology 2012, Vol.21 (1), p.159-168 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 168 |
---|---|
container_issue | 1 |
container_start_page | 159 |
container_title | Journal of thermal spray technology |
container_volume | 21 |
creator | Kuz’min, V. I. Mikhal’chenko, A. A. Kovalev, O. B. Kartaev, E. V. Rudenskaya, N. A. |
description | The paper presents an investigation of a unit of annular injection of powder materials into a thermal plasma flow. The unit is designed for the electric-arc direct-current plasma torch with a sectioned inter-electrode insert up to 100 kW, which was developed earlier. Energy characteristics (thermal efficiency and thermal power of the plasma jet) and spectra of plasma torch current and voltage fluctuations are described. The characteristics of the radial temperature distribution in the plasma jet in the annular and point powder injection cases are compared. A multi-channel spectrometer with a photo-diode array was implemented for the measurements. It is shown that, in contrast to point injection of powder particles, which is carried out across the jet on the nozzle exit, distributed annular injection with gas-dynamic focusing provides a dense axisymmetric heterogeneous flow, in which almost all particles pass through a high-temperature and high-speed area near the plasma jet axis. |
doi_str_mv | 10.1007/s11666-011-9701-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671339456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554974771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-ffdd3a436143d0563610443380b0d9fe439c08627b18b58e02253785165d58f83</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRsFZ_gLvBlZvovZlHJstSrRUUBet6SJNJm5Jk4kxK7b93YgVBcHUf3O9w7iHkEuEGAZJbjyiljAAxShPASB6REQrOIwSUx6EHkUapZHBKzrzfAICQsRiR9cLk67b62BpqSzqzrsn6yrbDkLV08ln5fdOY3lU5nZveOLsyrbFbT2e13dG7ravaFV2sTeBq-ta5bD8sAv1qd4Vx9DkLUJXV_pyclKGYi586Ju-z-8V0Hj29PDxOJ09Rzrjqo7IsCpZxJpGzIngMDXDOmIIlFGlpOEtzUDJOlqiWQhmIY8ESJVCKQqhSsTG5Puh2zoavfK-byuemrrNv3xplgoylPEiPydWf043duja40ylyriTgoIeHo9xZ750pdeeqJnN7jaCH6PUheh2i10P0ehCOD4zvhnyM-xX-H_oCNQaFTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914486018</pqid></control><display><type>article</type><title>Technique of Formation of an Axisymmetric Heterogeneous Flow During Thermal Spraying of Powder Materials</title><source>SpringerLink Journals</source><creator>Kuz’min, V. I. ; Mikhal’chenko, A. A. ; Kovalev, O. B. ; Kartaev, E. V. ; Rudenskaya, N. A.</creator><creatorcontrib>Kuz’min, V. I. ; Mikhal’chenko, A. A. ; Kovalev, O. B. ; Kartaev, E. V. ; Rudenskaya, N. A.</creatorcontrib><description>The paper presents an investigation of a unit of annular injection of powder materials into a thermal plasma flow. The unit is designed for the electric-arc direct-current plasma torch with a sectioned inter-electrode insert up to 100 kW, which was developed earlier. Energy characteristics (thermal efficiency and thermal power of the plasma jet) and spectra of plasma torch current and voltage fluctuations are described. The characteristics of the radial temperature distribution in the plasma jet in the annular and point powder injection cases are compared. A multi-channel spectrometer with a photo-diode array was implemented for the measurements. It is shown that, in contrast to point injection of powder particles, which is carried out across the jet on the nozzle exit, distributed annular injection with gas-dynamic focusing provides a dense axisymmetric heterogeneous flow, in which almost all particles pass through a high-temperature and high-speed area near the plasma jet axis.</description><identifier>ISSN: 1059-9630</identifier><identifier>EISSN: 1544-1016</identifier><identifier>DOI: 10.1007/s11666-011-9701-6</identifier><identifier>CODEN: JTTEE5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Analytical Chemistry ; Annular ; Arrays ; Axisymmetric ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Corrosion and Coatings ; Electric potential ; Focusing ; High temperature ; Injection ; Machines ; Manufacturing ; Materials Science ; Peer Reviewed ; Plasma torches ; Processes ; Spectrometers ; Surfaces and Interfaces ; Temperature distribution ; Thermal power ; Thermoelectricity ; Thin Films ; Tribology</subject><ispartof>Journal of thermal spray technology, 2012, Vol.21 (1), p.159-168</ispartof><rights>ASM International 2011</rights><rights>ASM International 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-ffdd3a436143d0563610443380b0d9fe439c08627b18b58e02253785165d58f83</citedby><cites>FETCH-LOGICAL-c348t-ffdd3a436143d0563610443380b0d9fe439c08627b18b58e02253785165d58f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11666-011-9701-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11666-011-9701-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kuz’min, V. I.</creatorcontrib><creatorcontrib>Mikhal’chenko, A. A.</creatorcontrib><creatorcontrib>Kovalev, O. B.</creatorcontrib><creatorcontrib>Kartaev, E. V.</creatorcontrib><creatorcontrib>Rudenskaya, N. A.</creatorcontrib><title>Technique of Formation of an Axisymmetric Heterogeneous Flow During Thermal Spraying of Powder Materials</title><title>Journal of thermal spray technology</title><addtitle>J Therm Spray Tech</addtitle><description>The paper presents an investigation of a unit of annular injection of powder materials into a thermal plasma flow. The unit is designed for the electric-arc direct-current plasma torch with a sectioned inter-electrode insert up to 100 kW, which was developed earlier. Energy characteristics (thermal efficiency and thermal power of the plasma jet) and spectra of plasma torch current and voltage fluctuations are described. The characteristics of the radial temperature distribution in the plasma jet in the annular and point powder injection cases are compared. A multi-channel spectrometer with a photo-diode array was implemented for the measurements. It is shown that, in contrast to point injection of powder particles, which is carried out across the jet on the nozzle exit, distributed annular injection with gas-dynamic focusing provides a dense axisymmetric heterogeneous flow, in which almost all particles pass through a high-temperature and high-speed area near the plasma jet axis.</description><subject>Analytical Chemistry</subject><subject>Annular</subject><subject>Arrays</subject><subject>Axisymmetric</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion and Coatings</subject><subject>Electric potential</subject><subject>Focusing</subject><subject>High temperature</subject><subject>Injection</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Peer Reviewed</subject><subject>Plasma torches</subject><subject>Processes</subject><subject>Spectrometers</subject><subject>Surfaces and Interfaces</subject><subject>Temperature distribution</subject><subject>Thermal power</subject><subject>Thermoelectricity</subject><subject>Thin Films</subject><subject>Tribology</subject><issn>1059-9630</issn><issn>1544-1016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEtLw0AUhQdRsFZ_gLvBlZvovZlHJstSrRUUBet6SJNJm5Jk4kxK7b93YgVBcHUf3O9w7iHkEuEGAZJbjyiljAAxShPASB6REQrOIwSUx6EHkUapZHBKzrzfAICQsRiR9cLk67b62BpqSzqzrsn6yrbDkLV08ln5fdOY3lU5nZveOLsyrbFbT2e13dG7ravaFV2sTeBq-ta5bD8sAv1qd4Vx9DkLUJXV_pyclKGYi586Ju-z-8V0Hj29PDxOJ09Rzrjqo7IsCpZxJpGzIngMDXDOmIIlFGlpOEtzUDJOlqiWQhmIY8ESJVCKQqhSsTG5Puh2zoavfK-byuemrrNv3xplgoylPEiPydWf043duja40ylyriTgoIeHo9xZ750pdeeqJnN7jaCH6PUheh2i10P0ehCOD4zvhnyM-xX-H_oCNQaFTA</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Kuz’min, V. I.</creator><creator>Mikhal’chenko, A. A.</creator><creator>Kovalev, O. B.</creator><creator>Kartaev, E. V.</creator><creator>Rudenskaya, N. A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>2012</creationdate><title>Technique of Formation of an Axisymmetric Heterogeneous Flow During Thermal Spraying of Powder Materials</title><author>Kuz’min, V. I. ; Mikhal’chenko, A. A. ; Kovalev, O. B. ; Kartaev, E. V. ; Rudenskaya, N. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-ffdd3a436143d0563610443380b0d9fe439c08627b18b58e02253785165d58f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analytical Chemistry</topic><topic>Annular</topic><topic>Arrays</topic><topic>Axisymmetric</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion and Coatings</topic><topic>Electric potential</topic><topic>Focusing</topic><topic>High temperature</topic><topic>Injection</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Peer Reviewed</topic><topic>Plasma torches</topic><topic>Processes</topic><topic>Spectrometers</topic><topic>Surfaces and Interfaces</topic><topic>Temperature distribution</topic><topic>Thermal power</topic><topic>Thermoelectricity</topic><topic>Thin Films</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuz’min, V. I.</creatorcontrib><creatorcontrib>Mikhal’chenko, A. A.</creatorcontrib><creatorcontrib>Kovalev, O. B.</creatorcontrib><creatorcontrib>Kartaev, E. V.</creatorcontrib><creatorcontrib>Rudenskaya, N. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of thermal spray technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuz’min, V. I.</au><au>Mikhal’chenko, A. A.</au><au>Kovalev, O. B.</au><au>Kartaev, E. V.</au><au>Rudenskaya, N. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Technique of Formation of an Axisymmetric Heterogeneous Flow During Thermal Spraying of Powder Materials</atitle><jtitle>Journal of thermal spray technology</jtitle><stitle>J Therm Spray Tech</stitle><date>2012</date><risdate>2012</risdate><volume>21</volume><issue>1</issue><spage>159</spage><epage>168</epage><pages>159-168</pages><issn>1059-9630</issn><eissn>1544-1016</eissn><coden>JTTEE5</coden><abstract>The paper presents an investigation of a unit of annular injection of powder materials into a thermal plasma flow. The unit is designed for the electric-arc direct-current plasma torch with a sectioned inter-electrode insert up to 100 kW, which was developed earlier. Energy characteristics (thermal efficiency and thermal power of the plasma jet) and spectra of plasma torch current and voltage fluctuations are described. The characteristics of the radial temperature distribution in the plasma jet in the annular and point powder injection cases are compared. A multi-channel spectrometer with a photo-diode array was implemented for the measurements. It is shown that, in contrast to point injection of powder particles, which is carried out across the jet on the nozzle exit, distributed annular injection with gas-dynamic focusing provides a dense axisymmetric heterogeneous flow, in which almost all particles pass through a high-temperature and high-speed area near the plasma jet axis.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11666-011-9701-6</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-9630 |
ispartof | Journal of thermal spray technology, 2012, Vol.21 (1), p.159-168 |
issn | 1059-9630 1544-1016 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671339456 |
source | SpringerLink Journals |
subjects | Analytical Chemistry Annular Arrays Axisymmetric Characterization and Evaluation of Materials Chemistry and Materials Science Corrosion and Coatings Electric potential Focusing High temperature Injection Machines Manufacturing Materials Science Peer Reviewed Plasma torches Processes Spectrometers Surfaces and Interfaces Temperature distribution Thermal power Thermoelectricity Thin Films Tribology |
title | Technique of Formation of an Axisymmetric Heterogeneous Flow During Thermal Spraying of Powder Materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Technique%20of%20Formation%20of%20an%20Axisymmetric%20Heterogeneous%20Flow%20During%20Thermal%20Spraying%20of%20Powder%20Materials&rft.jtitle=Journal%20of%20thermal%20spray%20technology&rft.au=Kuz%E2%80%99min,%20V.%20I.&rft.date=2012&rft.volume=21&rft.issue=1&rft.spage=159&rft.epage=168&rft.pages=159-168&rft.issn=1059-9630&rft.eissn=1544-1016&rft.coden=JTTEE5&rft_id=info:doi/10.1007/s11666-011-9701-6&rft_dat=%3Cproquest_cross%3E2554974771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914486018&rft_id=info:pmid/&rfr_iscdi=true |