Technique of Formation of an Axisymmetric Heterogeneous Flow During Thermal Spraying of Powder Materials

The paper presents an investigation of a unit of annular injection of powder materials into a thermal plasma flow. The unit is designed for the electric-arc direct-current plasma torch with a sectioned inter-electrode insert up to 100 kW, which was developed earlier. Energy characteristics (thermal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal spray technology 2012, Vol.21 (1), p.159-168
Hauptverfasser: Kuz’min, V. I., Mikhal’chenko, A. A., Kovalev, O. B., Kartaev, E. V., Rudenskaya, N. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 168
container_issue 1
container_start_page 159
container_title Journal of thermal spray technology
container_volume 21
creator Kuz’min, V. I.
Mikhal’chenko, A. A.
Kovalev, O. B.
Kartaev, E. V.
Rudenskaya, N. A.
description The paper presents an investigation of a unit of annular injection of powder materials into a thermal plasma flow. The unit is designed for the electric-arc direct-current plasma torch with a sectioned inter-electrode insert up to 100 kW, which was developed earlier. Energy characteristics (thermal efficiency and thermal power of the plasma jet) and spectra of plasma torch current and voltage fluctuations are described. The characteristics of the radial temperature distribution in the plasma jet in the annular and point powder injection cases are compared. A multi-channel spectrometer with a photo-diode array was implemented for the measurements. It is shown that, in contrast to point injection of powder particles, which is carried out across the jet on the nozzle exit, distributed annular injection with gas-dynamic focusing provides a dense axisymmetric heterogeneous flow, in which almost all particles pass through a high-temperature and high-speed area near the plasma jet axis.
doi_str_mv 10.1007/s11666-011-9701-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671339456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554974771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-ffdd3a436143d0563610443380b0d9fe439c08627b18b58e02253785165d58f83</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRsFZ_gLvBlZvovZlHJstSrRUUBet6SJNJm5Jk4kxK7b93YgVBcHUf3O9w7iHkEuEGAZJbjyiljAAxShPASB6REQrOIwSUx6EHkUapZHBKzrzfAICQsRiR9cLk67b62BpqSzqzrsn6yrbDkLV08ln5fdOY3lU5nZveOLsyrbFbT2e13dG7ravaFV2sTeBq-ta5bD8sAv1qd4Vx9DkLUJXV_pyclKGYi586Ju-z-8V0Hj29PDxOJ09Rzrjqo7IsCpZxJpGzIngMDXDOmIIlFGlpOEtzUDJOlqiWQhmIY8ESJVCKQqhSsTG5Puh2zoavfK-byuemrrNv3xplgoylPEiPydWf043duja40ylyriTgoIeHo9xZ750pdeeqJnN7jaCH6PUheh2i10P0ehCOD4zvhnyM-xX-H_oCNQaFTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914486018</pqid></control><display><type>article</type><title>Technique of Formation of an Axisymmetric Heterogeneous Flow During Thermal Spraying of Powder Materials</title><source>SpringerLink Journals</source><creator>Kuz’min, V. I. ; Mikhal’chenko, A. A. ; Kovalev, O. B. ; Kartaev, E. V. ; Rudenskaya, N. A.</creator><creatorcontrib>Kuz’min, V. I. ; Mikhal’chenko, A. A. ; Kovalev, O. B. ; Kartaev, E. V. ; Rudenskaya, N. A.</creatorcontrib><description>The paper presents an investigation of a unit of annular injection of powder materials into a thermal plasma flow. The unit is designed for the electric-arc direct-current plasma torch with a sectioned inter-electrode insert up to 100 kW, which was developed earlier. Energy characteristics (thermal efficiency and thermal power of the plasma jet) and spectra of plasma torch current and voltage fluctuations are described. The characteristics of the radial temperature distribution in the plasma jet in the annular and point powder injection cases are compared. A multi-channel spectrometer with a photo-diode array was implemented for the measurements. It is shown that, in contrast to point injection of powder particles, which is carried out across the jet on the nozzle exit, distributed annular injection with gas-dynamic focusing provides a dense axisymmetric heterogeneous flow, in which almost all particles pass through a high-temperature and high-speed area near the plasma jet axis.</description><identifier>ISSN: 1059-9630</identifier><identifier>EISSN: 1544-1016</identifier><identifier>DOI: 10.1007/s11666-011-9701-6</identifier><identifier>CODEN: JTTEE5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Analytical Chemistry ; Annular ; Arrays ; Axisymmetric ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Corrosion and Coatings ; Electric potential ; Focusing ; High temperature ; Injection ; Machines ; Manufacturing ; Materials Science ; Peer Reviewed ; Plasma torches ; Processes ; Spectrometers ; Surfaces and Interfaces ; Temperature distribution ; Thermal power ; Thermoelectricity ; Thin Films ; Tribology</subject><ispartof>Journal of thermal spray technology, 2012, Vol.21 (1), p.159-168</ispartof><rights>ASM International 2011</rights><rights>ASM International 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-ffdd3a436143d0563610443380b0d9fe439c08627b18b58e02253785165d58f83</citedby><cites>FETCH-LOGICAL-c348t-ffdd3a436143d0563610443380b0d9fe439c08627b18b58e02253785165d58f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11666-011-9701-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11666-011-9701-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kuz’min, V. I.</creatorcontrib><creatorcontrib>Mikhal’chenko, A. A.</creatorcontrib><creatorcontrib>Kovalev, O. B.</creatorcontrib><creatorcontrib>Kartaev, E. V.</creatorcontrib><creatorcontrib>Rudenskaya, N. A.</creatorcontrib><title>Technique of Formation of an Axisymmetric Heterogeneous Flow During Thermal Spraying of Powder Materials</title><title>Journal of thermal spray technology</title><addtitle>J Therm Spray Tech</addtitle><description>The paper presents an investigation of a unit of annular injection of powder materials into a thermal plasma flow. The unit is designed for the electric-arc direct-current plasma torch with a sectioned inter-electrode insert up to 100 kW, which was developed earlier. Energy characteristics (thermal efficiency and thermal power of the plasma jet) and spectra of plasma torch current and voltage fluctuations are described. The characteristics of the radial temperature distribution in the plasma jet in the annular and point powder injection cases are compared. A multi-channel spectrometer with a photo-diode array was implemented for the measurements. It is shown that, in contrast to point injection of powder particles, which is carried out across the jet on the nozzle exit, distributed annular injection with gas-dynamic focusing provides a dense axisymmetric heterogeneous flow, in which almost all particles pass through a high-temperature and high-speed area near the plasma jet axis.</description><subject>Analytical Chemistry</subject><subject>Annular</subject><subject>Arrays</subject><subject>Axisymmetric</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion and Coatings</subject><subject>Electric potential</subject><subject>Focusing</subject><subject>High temperature</subject><subject>Injection</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Peer Reviewed</subject><subject>Plasma torches</subject><subject>Processes</subject><subject>Spectrometers</subject><subject>Surfaces and Interfaces</subject><subject>Temperature distribution</subject><subject>Thermal power</subject><subject>Thermoelectricity</subject><subject>Thin Films</subject><subject>Tribology</subject><issn>1059-9630</issn><issn>1544-1016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEtLw0AUhQdRsFZ_gLvBlZvovZlHJstSrRUUBet6SJNJm5Jk4kxK7b93YgVBcHUf3O9w7iHkEuEGAZJbjyiljAAxShPASB6REQrOIwSUx6EHkUapZHBKzrzfAICQsRiR9cLk67b62BpqSzqzrsn6yrbDkLV08ln5fdOY3lU5nZveOLsyrbFbT2e13dG7ravaFV2sTeBq-ta5bD8sAv1qd4Vx9DkLUJXV_pyclKGYi586Ju-z-8V0Hj29PDxOJ09Rzrjqo7IsCpZxJpGzIngMDXDOmIIlFGlpOEtzUDJOlqiWQhmIY8ESJVCKQqhSsTG5Puh2zoavfK-byuemrrNv3xplgoylPEiPydWf043duja40ylyriTgoIeHo9xZ750pdeeqJnN7jaCH6PUheh2i10P0ehCOD4zvhnyM-xX-H_oCNQaFTA</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Kuz’min, V. I.</creator><creator>Mikhal’chenko, A. A.</creator><creator>Kovalev, O. B.</creator><creator>Kartaev, E. V.</creator><creator>Rudenskaya, N. A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>2012</creationdate><title>Technique of Formation of an Axisymmetric Heterogeneous Flow During Thermal Spraying of Powder Materials</title><author>Kuz’min, V. I. ; Mikhal’chenko, A. A. ; Kovalev, O. B. ; Kartaev, E. V. ; Rudenskaya, N. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-ffdd3a436143d0563610443380b0d9fe439c08627b18b58e02253785165d58f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analytical Chemistry</topic><topic>Annular</topic><topic>Arrays</topic><topic>Axisymmetric</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion and Coatings</topic><topic>Electric potential</topic><topic>Focusing</topic><topic>High temperature</topic><topic>Injection</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Peer Reviewed</topic><topic>Plasma torches</topic><topic>Processes</topic><topic>Spectrometers</topic><topic>Surfaces and Interfaces</topic><topic>Temperature distribution</topic><topic>Thermal power</topic><topic>Thermoelectricity</topic><topic>Thin Films</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuz’min, V. I.</creatorcontrib><creatorcontrib>Mikhal’chenko, A. A.</creatorcontrib><creatorcontrib>Kovalev, O. B.</creatorcontrib><creatorcontrib>Kartaev, E. V.</creatorcontrib><creatorcontrib>Rudenskaya, N. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of thermal spray technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuz’min, V. I.</au><au>Mikhal’chenko, A. A.</au><au>Kovalev, O. B.</au><au>Kartaev, E. V.</au><au>Rudenskaya, N. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Technique of Formation of an Axisymmetric Heterogeneous Flow During Thermal Spraying of Powder Materials</atitle><jtitle>Journal of thermal spray technology</jtitle><stitle>J Therm Spray Tech</stitle><date>2012</date><risdate>2012</risdate><volume>21</volume><issue>1</issue><spage>159</spage><epage>168</epage><pages>159-168</pages><issn>1059-9630</issn><eissn>1544-1016</eissn><coden>JTTEE5</coden><abstract>The paper presents an investigation of a unit of annular injection of powder materials into a thermal plasma flow. The unit is designed for the electric-arc direct-current plasma torch with a sectioned inter-electrode insert up to 100 kW, which was developed earlier. Energy characteristics (thermal efficiency and thermal power of the plasma jet) and spectra of plasma torch current and voltage fluctuations are described. The characteristics of the radial temperature distribution in the plasma jet in the annular and point powder injection cases are compared. A multi-channel spectrometer with a photo-diode array was implemented for the measurements. It is shown that, in contrast to point injection of powder particles, which is carried out across the jet on the nozzle exit, distributed annular injection with gas-dynamic focusing provides a dense axisymmetric heterogeneous flow, in which almost all particles pass through a high-temperature and high-speed area near the plasma jet axis.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11666-011-9701-6</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1059-9630
ispartof Journal of thermal spray technology, 2012, Vol.21 (1), p.159-168
issn 1059-9630
1544-1016
language eng
recordid cdi_proquest_miscellaneous_1671339456
source SpringerLink Journals
subjects Analytical Chemistry
Annular
Arrays
Axisymmetric
Characterization and Evaluation of Materials
Chemistry and Materials Science
Corrosion and Coatings
Electric potential
Focusing
High temperature
Injection
Machines
Manufacturing
Materials Science
Peer Reviewed
Plasma torches
Processes
Spectrometers
Surfaces and Interfaces
Temperature distribution
Thermal power
Thermoelectricity
Thin Films
Tribology
title Technique of Formation of an Axisymmetric Heterogeneous Flow During Thermal Spraying of Powder Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Technique%20of%20Formation%20of%20an%20Axisymmetric%20Heterogeneous%20Flow%20During%20Thermal%20Spraying%20of%20Powder%20Materials&rft.jtitle=Journal%20of%20thermal%20spray%20technology&rft.au=Kuz%E2%80%99min,%20V.%20I.&rft.date=2012&rft.volume=21&rft.issue=1&rft.spage=159&rft.epage=168&rft.pages=159-168&rft.issn=1059-9630&rft.eissn=1544-1016&rft.coden=JTTEE5&rft_id=info:doi/10.1007/s11666-011-9701-6&rft_dat=%3Cproquest_cross%3E2554974771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914486018&rft_id=info:pmid/&rfr_iscdi=true