Challenges toward higher temperature operation of LiFePO4
Large-scale lithium-ion batteries operating at higher temperature may provide additional advantageous aspects such as higher power and use of new materials which are inactive at ambient temperatures. As a first step for this direction, we applied LiFePO4 cathode to middle-temperature region of 60 °C...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2012-09, Vol.214, p.166-170 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 170 |
---|---|
container_issue | |
container_start_page | 166 |
container_title | Journal of power sources |
container_volume | 214 |
creator | Kurita, Tomochika Lu, Jiechen Yaegashi, Makoto Yamada, Yuki Nishimura, Shin-ichi Tanaka, Tsutomu Uzumaki, Takuya Yamada, Atsuo |
description | Large-scale lithium-ion batteries operating at higher temperature may provide additional advantageous aspects such as higher power and use of new materials which are inactive at ambient temperatures. As a first step for this direction, we applied LiFePO4 cathode to middle-temperature region of 60 °C–115 °C and investigated temperature-dependent charge–discharge properties. By selecting suitable electrolyte and battery components tolerant to the elevated temperature, stable operation was attained for no less than 50 cycles below 115 °C. High-rate performance was significantly improved as operating temperature increased up to 100 °C, but suffered from abrupt increase in polarization above 100 °C, where the corresponding impedance signal emerged, which might be assigned to some side reactions occurring at the surface of LiFePO4 particles. At 100 °C, the discharge capacity over 100 mAh g−1 was achieved at 200C rate, even with 10wt% of carbon in the electrode composite of LiFePO4. Shrinkage of miscibility gap was not confirmed for samples larger than 40 nm at < 115 °C.
► Charge–discharge properties of LiFePO4 at 60 °C–115 °C were investigated. ► Elevating temperature up to 100 °C significantly enhanced reaction speed of LiFePO4. ► Side reaction to form resistive surface layer impede high-rate performance above 100 °C. ► Trade-off between fast kinetics and side reaction is to be considered at higher temperature. ► Miscibility gap do not shrink for samples with >40 nm at 115 °C. |
doi_str_mv | 10.1016/j.jpowsour.2012.04.073 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671339428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775312008075</els_id><sourcerecordid>1671339428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-8ad129c33877144672684684f390491ce3e170cf129f16dadd576ebc6054c5ab3</originalsourceid><addsrcrecordid>eNqFkEFPwzAMhSMEEmPwF1AvSFxanCZN2htoYoA0aRzgHGWpu6XqmpK0TPx7Oja4IlmyD9_zsx8h1xQSClTc1UnduV1wg09SoGkCPAHJTsiE5pLFqcyyUzIBJvNYyoydk4sQagCgVMKEFLONbhps1xii3u20L6ONXW_QRz1uO_S6HzxG7meyro1cFS3sHF-X_JKcVboJeHXsU_I-f3ybPceL5dPL7GERGwZZH-e6pGlhGMulpJwLmYqcj1WxAnhBDTIcDzHVCFVUlLosMylwZQRk3GR6xabk9rC38-5jwNCrrQ0Gm0a36IagqJCUsYKn-YiKA2q8C8FjpTpvt9p_KQpqn5Wq1W9Wap-VAq7GrEbhzdFDB6ObyuvW2PCnTgXltOAwcvcHDseHPy16FYzF1mBpPZpelc7-Z_UNJ2OCBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671339428</pqid></control><display><type>article</type><title>Challenges toward higher temperature operation of LiFePO4</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kurita, Tomochika ; Lu, Jiechen ; Yaegashi, Makoto ; Yamada, Yuki ; Nishimura, Shin-ichi ; Tanaka, Tsutomu ; Uzumaki, Takuya ; Yamada, Atsuo</creator><creatorcontrib>Kurita, Tomochika ; Lu, Jiechen ; Yaegashi, Makoto ; Yamada, Yuki ; Nishimura, Shin-ichi ; Tanaka, Tsutomu ; Uzumaki, Takuya ; Yamada, Atsuo</creatorcontrib><description>Large-scale lithium-ion batteries operating at higher temperature may provide additional advantageous aspects such as higher power and use of new materials which are inactive at ambient temperatures. As a first step for this direction, we applied LiFePO4 cathode to middle-temperature region of 60 °C–115 °C and investigated temperature-dependent charge–discharge properties. By selecting suitable electrolyte and battery components tolerant to the elevated temperature, stable operation was attained for no less than 50 cycles below 115 °C. High-rate performance was significantly improved as operating temperature increased up to 100 °C, but suffered from abrupt increase in polarization above 100 °C, where the corresponding impedance signal emerged, which might be assigned to some side reactions occurring at the surface of LiFePO4 particles. At 100 °C, the discharge capacity over 100 mAh g−1 was achieved at 200C rate, even with 10wt% of carbon in the electrode composite of LiFePO4. Shrinkage of miscibility gap was not confirmed for samples larger than 40 nm at < 115 °C.
► Charge–discharge properties of LiFePO4 at 60 °C–115 °C were investigated. ► Elevating temperature up to 100 °C significantly enhanced reaction speed of LiFePO4. ► Side reaction to form resistive surface layer impede high-rate performance above 100 °C. ► Trade-off between fast kinetics and side reaction is to be considered at higher temperature. ► Miscibility gap do not shrink for samples with >40 nm at 115 °C.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2012.04.073</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A.C. impedance spectroscopy ; Applied sciences ; Battery ; Carbon ; Cathodes ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrodes ; Exact sciences and technology ; High temperature ; Lithium iron phosphate ; Materials ; Middle-temperature region ; Operating temperature ; Polarization ; Rate capability ; Shrinkage</subject><ispartof>Journal of power sources, 2012-09, Vol.214, p.166-170</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-8ad129c33877144672684684f390491ce3e170cf129f16dadd576ebc6054c5ab3</citedby><cites>FETCH-LOGICAL-c305t-8ad129c33877144672684684f390491ce3e170cf129f16dadd576ebc6054c5ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2012.04.073$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26141940$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurita, Tomochika</creatorcontrib><creatorcontrib>Lu, Jiechen</creatorcontrib><creatorcontrib>Yaegashi, Makoto</creatorcontrib><creatorcontrib>Yamada, Yuki</creatorcontrib><creatorcontrib>Nishimura, Shin-ichi</creatorcontrib><creatorcontrib>Tanaka, Tsutomu</creatorcontrib><creatorcontrib>Uzumaki, Takuya</creatorcontrib><creatorcontrib>Yamada, Atsuo</creatorcontrib><title>Challenges toward higher temperature operation of LiFePO4</title><title>Journal of power sources</title><description>Large-scale lithium-ion batteries operating at higher temperature may provide additional advantageous aspects such as higher power and use of new materials which are inactive at ambient temperatures. As a first step for this direction, we applied LiFePO4 cathode to middle-temperature region of 60 °C–115 °C and investigated temperature-dependent charge–discharge properties. By selecting suitable electrolyte and battery components tolerant to the elevated temperature, stable operation was attained for no less than 50 cycles below 115 °C. High-rate performance was significantly improved as operating temperature increased up to 100 °C, but suffered from abrupt increase in polarization above 100 °C, where the corresponding impedance signal emerged, which might be assigned to some side reactions occurring at the surface of LiFePO4 particles. At 100 °C, the discharge capacity over 100 mAh g−1 was achieved at 200C rate, even with 10wt% of carbon in the electrode composite of LiFePO4. Shrinkage of miscibility gap was not confirmed for samples larger than 40 nm at < 115 °C.
► Charge–discharge properties of LiFePO4 at 60 °C–115 °C were investigated. ► Elevating temperature up to 100 °C significantly enhanced reaction speed of LiFePO4. ► Side reaction to form resistive surface layer impede high-rate performance above 100 °C. ► Trade-off between fast kinetics and side reaction is to be considered at higher temperature. ► Miscibility gap do not shrink for samples with >40 nm at 115 °C.</description><subject>A.C. impedance spectroscopy</subject><subject>Applied sciences</subject><subject>Battery</subject><subject>Carbon</subject><subject>Cathodes</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrodes</subject><subject>Exact sciences and technology</subject><subject>High temperature</subject><subject>Lithium iron phosphate</subject><subject>Materials</subject><subject>Middle-temperature region</subject><subject>Operating temperature</subject><subject>Polarization</subject><subject>Rate capability</subject><subject>Shrinkage</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPwzAMhSMEEmPwF1AvSFxanCZN2htoYoA0aRzgHGWpu6XqmpK0TPx7Oja4IlmyD9_zsx8h1xQSClTc1UnduV1wg09SoGkCPAHJTsiE5pLFqcyyUzIBJvNYyoydk4sQagCgVMKEFLONbhps1xii3u20L6ONXW_QRz1uO_S6HzxG7meyro1cFS3sHF-X_JKcVboJeHXsU_I-f3ybPceL5dPL7GERGwZZH-e6pGlhGMulpJwLmYqcj1WxAnhBDTIcDzHVCFVUlLosMylwZQRk3GR6xabk9rC38-5jwNCrrQ0Gm0a36IagqJCUsYKn-YiKA2q8C8FjpTpvt9p_KQpqn5Wq1W9Wap-VAq7GrEbhzdFDB6ObyuvW2PCnTgXltOAwcvcHDseHPy16FYzF1mBpPZpelc7-Z_UNJ2OCBA</recordid><startdate>20120915</startdate><enddate>20120915</enddate><creator>Kurita, Tomochika</creator><creator>Lu, Jiechen</creator><creator>Yaegashi, Makoto</creator><creator>Yamada, Yuki</creator><creator>Nishimura, Shin-ichi</creator><creator>Tanaka, Tsutomu</creator><creator>Uzumaki, Takuya</creator><creator>Yamada, Atsuo</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20120915</creationdate><title>Challenges toward higher temperature operation of LiFePO4</title><author>Kurita, Tomochika ; Lu, Jiechen ; Yaegashi, Makoto ; Yamada, Yuki ; Nishimura, Shin-ichi ; Tanaka, Tsutomu ; Uzumaki, Takuya ; Yamada, Atsuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-8ad129c33877144672684684f390491ce3e170cf129f16dadd576ebc6054c5ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>A.C. impedance spectroscopy</topic><topic>Applied sciences</topic><topic>Battery</topic><topic>Carbon</topic><topic>Cathodes</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrodes</topic><topic>Exact sciences and technology</topic><topic>High temperature</topic><topic>Lithium iron phosphate</topic><topic>Materials</topic><topic>Middle-temperature region</topic><topic>Operating temperature</topic><topic>Polarization</topic><topic>Rate capability</topic><topic>Shrinkage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurita, Tomochika</creatorcontrib><creatorcontrib>Lu, Jiechen</creatorcontrib><creatorcontrib>Yaegashi, Makoto</creatorcontrib><creatorcontrib>Yamada, Yuki</creatorcontrib><creatorcontrib>Nishimura, Shin-ichi</creatorcontrib><creatorcontrib>Tanaka, Tsutomu</creatorcontrib><creatorcontrib>Uzumaki, Takuya</creatorcontrib><creatorcontrib>Yamada, Atsuo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurita, Tomochika</au><au>Lu, Jiechen</au><au>Yaegashi, Makoto</au><au>Yamada, Yuki</au><au>Nishimura, Shin-ichi</au><au>Tanaka, Tsutomu</au><au>Uzumaki, Takuya</au><au>Yamada, Atsuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Challenges toward higher temperature operation of LiFePO4</atitle><jtitle>Journal of power sources</jtitle><date>2012-09-15</date><risdate>2012</risdate><volume>214</volume><spage>166</spage><epage>170</epage><pages>166-170</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Large-scale lithium-ion batteries operating at higher temperature may provide additional advantageous aspects such as higher power and use of new materials which are inactive at ambient temperatures. As a first step for this direction, we applied LiFePO4 cathode to middle-temperature region of 60 °C–115 °C and investigated temperature-dependent charge–discharge properties. By selecting suitable electrolyte and battery components tolerant to the elevated temperature, stable operation was attained for no less than 50 cycles below 115 °C. High-rate performance was significantly improved as operating temperature increased up to 100 °C, but suffered from abrupt increase in polarization above 100 °C, where the corresponding impedance signal emerged, which might be assigned to some side reactions occurring at the surface of LiFePO4 particles. At 100 °C, the discharge capacity over 100 mAh g−1 was achieved at 200C rate, even with 10wt% of carbon in the electrode composite of LiFePO4. Shrinkage of miscibility gap was not confirmed for samples larger than 40 nm at < 115 °C.
► Charge–discharge properties of LiFePO4 at 60 °C–115 °C were investigated. ► Elevating temperature up to 100 °C significantly enhanced reaction speed of LiFePO4. ► Side reaction to form resistive surface layer impede high-rate performance above 100 °C. ► Trade-off between fast kinetics and side reaction is to be considered at higher temperature. ► Miscibility gap do not shrink for samples with >40 nm at 115 °C.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2012.04.073</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2012-09, Vol.214, p.166-170 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671339428 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | A.C. impedance spectroscopy Applied sciences Battery Carbon Cathodes Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Electrodes Exact sciences and technology High temperature Lithium iron phosphate Materials Middle-temperature region Operating temperature Polarization Rate capability Shrinkage |
title | Challenges toward higher temperature operation of LiFePO4 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A01%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Challenges%20toward%20higher%20temperature%20operation%20of%20LiFePO4&rft.jtitle=Journal%20of%20power%20sources&rft.au=Kurita,%20Tomochika&rft.date=2012-09-15&rft.volume=214&rft.spage=166&rft.epage=170&rft.pages=166-170&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2012.04.073&rft_dat=%3Cproquest_cross%3E1671339428%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671339428&rft_id=info:pmid/&rft_els_id=S0378775312008075&rfr_iscdi=true |