Opening Compensation in a 1.5T Open MRI Magnet for the Functional Study of the Human Motor Cortex

The magnet design of a magnet for the functional MRI (fMRI) study of the human motor cortex poses a number of challenges due to the necessity of maintaining the subject in a natural, erect position, with free access to the environment. This paper presents the design of a superconducting magnet deriv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2010-06, Vol.20 (3), p.1831-1834
Hauptverfasser: Bertora, Franco, Viale, Andrea, Molinari, Elisa, Fabbricatore, Pasquale
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1834
container_issue 3
container_start_page 1831
container_title IEEE transactions on applied superconductivity
container_volume 20
creator Bertora, Franco
Viale, Andrea
Molinari, Elisa
Fabbricatore, Pasquale
description The magnet design of a magnet for the functional MRI (fMRI) study of the human motor cortex poses a number of challenges due to the necessity of maintaining the subject in a natural, erect position, with free access to the environment. This paper presents the design of a superconducting magnet derived from a closed quasi-toroidal configuration. Subject access is obtained by deforming a section of the winding in such a way as to optimize the ensuing inhomogeneity and field intensity loss. The geometry of the deformed section and of the correcting structure are derived analytically and turn out to be function of a limited number of parameters. The optimization is readily achieved by a heuristic search in this limited dimensionality space. The final magnet configuration accommodates a sitting individual and produces a field intensity of 1.5 T with a total stored energy of 10 MJ; the magnet consists of planar and specially conformed, non planar coils. The maximum field on the conductor is less than 4.5T, allowing the use of NbTi wire with a current of the order of 400 A.
doi_str_mv 10.1109/TASC.2010.2042698
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671339135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5424103</ieee_id><sourcerecordid>746151132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-a6ce7fb832eff819dca692b0d5a4d20c6c79ee612bd0dcf6ac5518a687a964b63</originalsourceid><addsrcrecordid>eNp90U1r3DAQBmBTWkia9geEXgSlJBdvNaMPS8dg8gUJgWZ7NrOylDp4ra1lQ_LvK3eXHHroSSPNMwPiLYpT4CsAbr-vLx7rFfJ8RS5RW_OuOAalTIkK1PtccwWlQRRHxceUnjkHaaQ6Luhh54dueGJ13OYq0dTFgXUDIwYrtWZLm93_uGX39DT4iYU4sumXZ1fz4BZKPXuc5vaVxfD3_WbeUh6IU3Z1HCf_8qn4EKhP_vPhPCl-Xl2u65vy7uH6tr64K50wZipJO1-FjRHoQzBgW0fa4oa3imSL3GlXWe814KblrQuanFJgSJuKrJYbLU6Ks_3e3Rh_zz5NzbZLzvc9DT7OqamkBgUgMMvz_0rQFQhhQahMv_5Dn-M85l9nxbFCjgptVrBXbowpjT40u7Hb0viaUbPE0yzxNEs8zSGePPPtsJmSoz6MNLguvQ0iGo3Gyuy-7F3nvX9rK4kSuBB_AM5ClmI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027202529</pqid></control><display><type>article</type><title>Opening Compensation in a 1.5T Open MRI Magnet for the Functional Study of the Human Motor Cortex</title><source>IEEE Electronic Library (IEL)</source><creator>Bertora, Franco ; Viale, Andrea ; Molinari, Elisa ; Fabbricatore, Pasquale</creator><creatorcontrib>Bertora, Franco ; Viale, Andrea ; Molinari, Elisa ; Fabbricatore, Pasquale</creatorcontrib><description>The magnet design of a magnet for the functional MRI (fMRI) study of the human motor cortex poses a number of challenges due to the necessity of maintaining the subject in a natural, erect position, with free access to the environment. This paper presents the design of a superconducting magnet derived from a closed quasi-toroidal configuration. Subject access is obtained by deforming a section of the winding in such a way as to optimize the ensuing inhomogeneity and field intensity loss. The geometry of the deformed section and of the correcting structure are derived analytically and turn out to be function of a limited number of parameters. The optimization is readily achieved by a heuristic search in this limited dimensionality space. The final magnet configuration accommodates a sitting individual and produces a field intensity of 1.5 T with a total stored energy of 10 MJ; the magnet consists of planar and specially conformed, non planar coils. The maximum field on the conductor is less than 4.5T, allowing the use of NbTi wire with a current of the order of 400 A.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2010.2042698</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Brain ; Coils ; Compensation ; Conductors ; Conductors (devices) ; Cortexes ; Deformation ; Electrical engineering. Electrical power engineering ; Electrical machines ; Electromagnets ; Exact sciences and technology ; Field homogeneity ; Geometry ; Human ; Humans ; Inhomogeneity ; Magnetic analysis ; Magnetic resonance imaging ; magnets ; Miscellaneous ; Motors ; MRI ; Niobium compounds ; remote fields ; Searching ; Superconducting magnets ; Titanium compounds ; Various equipment and components ; Wire</subject><ispartof>IEEE transactions on applied superconductivity, 2010-06, Vol.20 (3), p.1831-1834</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-a6ce7fb832eff819dca692b0d5a4d20c6c79ee612bd0dcf6ac5518a687a964b63</citedby><cites>FETCH-LOGICAL-c388t-a6ce7fb832eff819dca692b0d5a4d20c6c79ee612bd0dcf6ac5518a687a964b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5424103$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23929,23930,25139,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5424103$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22862894$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bertora, Franco</creatorcontrib><creatorcontrib>Viale, Andrea</creatorcontrib><creatorcontrib>Molinari, Elisa</creatorcontrib><creatorcontrib>Fabbricatore, Pasquale</creatorcontrib><title>Opening Compensation in a 1.5T Open MRI Magnet for the Functional Study of the Human Motor Cortex</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The magnet design of a magnet for the functional MRI (fMRI) study of the human motor cortex poses a number of challenges due to the necessity of maintaining the subject in a natural, erect position, with free access to the environment. This paper presents the design of a superconducting magnet derived from a closed quasi-toroidal configuration. Subject access is obtained by deforming a section of the winding in such a way as to optimize the ensuing inhomogeneity and field intensity loss. The geometry of the deformed section and of the correcting structure are derived analytically and turn out to be function of a limited number of parameters. The optimization is readily achieved by a heuristic search in this limited dimensionality space. The final magnet configuration accommodates a sitting individual and produces a field intensity of 1.5 T with a total stored energy of 10 MJ; the magnet consists of planar and specially conformed, non planar coils. The maximum field on the conductor is less than 4.5T, allowing the use of NbTi wire with a current of the order of 400 A.</description><subject>Applied sciences</subject><subject>Brain</subject><subject>Coils</subject><subject>Compensation</subject><subject>Conductors</subject><subject>Conductors (devices)</subject><subject>Cortexes</subject><subject>Deformation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical machines</subject><subject>Electromagnets</subject><subject>Exact sciences and technology</subject><subject>Field homogeneity</subject><subject>Geometry</subject><subject>Human</subject><subject>Humans</subject><subject>Inhomogeneity</subject><subject>Magnetic analysis</subject><subject>Magnetic resonance imaging</subject><subject>magnets</subject><subject>Miscellaneous</subject><subject>Motors</subject><subject>MRI</subject><subject>Niobium compounds</subject><subject>remote fields</subject><subject>Searching</subject><subject>Superconducting magnets</subject><subject>Titanium compounds</subject><subject>Various equipment and components</subject><subject>Wire</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90U1r3DAQBmBTWkia9geEXgSlJBdvNaMPS8dg8gUJgWZ7NrOylDp4ra1lQ_LvK3eXHHroSSPNMwPiLYpT4CsAbr-vLx7rFfJ8RS5RW_OuOAalTIkK1PtccwWlQRRHxceUnjkHaaQ6Luhh54dueGJ13OYq0dTFgXUDIwYrtWZLm93_uGX39DT4iYU4sumXZ1fz4BZKPXuc5vaVxfD3_WbeUh6IU3Z1HCf_8qn4EKhP_vPhPCl-Xl2u65vy7uH6tr64K50wZipJO1-FjRHoQzBgW0fa4oa3imSL3GlXWe814KblrQuanFJgSJuKrJYbLU6Ks_3e3Rh_zz5NzbZLzvc9DT7OqamkBgUgMMvz_0rQFQhhQahMv_5Dn-M85l9nxbFCjgptVrBXbowpjT40u7Hb0viaUbPE0yzxNEs8zSGePPPtsJmSoz6MNLguvQ0iGo3Gyuy-7F3nvX9rK4kSuBB_AM5ClmI</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Bertora, Franco</creator><creator>Viale, Andrea</creator><creator>Molinari, Elisa</creator><creator>Fabbricatore, Pasquale</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>7TK</scope></search><sort><creationdate>20100601</creationdate><title>Opening Compensation in a 1.5T Open MRI Magnet for the Functional Study of the Human Motor Cortex</title><author>Bertora, Franco ; Viale, Andrea ; Molinari, Elisa ; Fabbricatore, Pasquale</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-a6ce7fb832eff819dca692b0d5a4d20c6c79ee612bd0dcf6ac5518a687a964b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Brain</topic><topic>Coils</topic><topic>Compensation</topic><topic>Conductors</topic><topic>Conductors (devices)</topic><topic>Cortexes</topic><topic>Deformation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical machines</topic><topic>Electromagnets</topic><topic>Exact sciences and technology</topic><topic>Field homogeneity</topic><topic>Geometry</topic><topic>Human</topic><topic>Humans</topic><topic>Inhomogeneity</topic><topic>Magnetic analysis</topic><topic>Magnetic resonance imaging</topic><topic>magnets</topic><topic>Miscellaneous</topic><topic>Motors</topic><topic>MRI</topic><topic>Niobium compounds</topic><topic>remote fields</topic><topic>Searching</topic><topic>Superconducting magnets</topic><topic>Titanium compounds</topic><topic>Various equipment and components</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bertora, Franco</creatorcontrib><creatorcontrib>Viale, Andrea</creatorcontrib><creatorcontrib>Molinari, Elisa</creatorcontrib><creatorcontrib>Fabbricatore, Pasquale</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Neurosciences Abstracts</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bertora, Franco</au><au>Viale, Andrea</au><au>Molinari, Elisa</au><au>Fabbricatore, Pasquale</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Opening Compensation in a 1.5T Open MRI Magnet for the Functional Study of the Human Motor Cortex</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2010-06-01</date><risdate>2010</risdate><volume>20</volume><issue>3</issue><spage>1831</spage><epage>1834</epage><pages>1831-1834</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The magnet design of a magnet for the functional MRI (fMRI) study of the human motor cortex poses a number of challenges due to the necessity of maintaining the subject in a natural, erect position, with free access to the environment. This paper presents the design of a superconducting magnet derived from a closed quasi-toroidal configuration. Subject access is obtained by deforming a section of the winding in such a way as to optimize the ensuing inhomogeneity and field intensity loss. The geometry of the deformed section and of the correcting structure are derived analytically and turn out to be function of a limited number of parameters. The optimization is readily achieved by a heuristic search in this limited dimensionality space. The final magnet configuration accommodates a sitting individual and produces a field intensity of 1.5 T with a total stored energy of 10 MJ; the magnet consists of planar and specially conformed, non planar coils. The maximum field on the conductor is less than 4.5T, allowing the use of NbTi wire with a current of the order of 400 A.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2010.2042698</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2010-06, Vol.20 (3), p.1831-1834
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_miscellaneous_1671339135
source IEEE Electronic Library (IEL)
subjects Applied sciences
Brain
Coils
Compensation
Conductors
Conductors (devices)
Cortexes
Deformation
Electrical engineering. Electrical power engineering
Electrical machines
Electromagnets
Exact sciences and technology
Field homogeneity
Geometry
Human
Humans
Inhomogeneity
Magnetic analysis
Magnetic resonance imaging
magnets
Miscellaneous
Motors
MRI
Niobium compounds
remote fields
Searching
Superconducting magnets
Titanium compounds
Various equipment and components
Wire
title Opening Compensation in a 1.5T Open MRI Magnet for the Functional Study of the Human Motor Cortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A15%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Opening%20Compensation%20in%20a%201.5T%20Open%20MRI%20Magnet%20for%20the%20Functional%20Study%20of%20the%20Human%20Motor%20Cortex&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Bertora,%20Franco&rft.date=2010-06-01&rft.volume=20&rft.issue=3&rft.spage=1831&rft.epage=1834&rft.pages=1831-1834&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2010.2042698&rft_dat=%3Cproquest_RIE%3E746151132%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027202529&rft_id=info:pmid/&rft_ieee_id=5424103&rfr_iscdi=true