Opening Compensation in a 1.5T Open MRI Magnet for the Functional Study of the Human Motor Cortex
The magnet design of a magnet for the functional MRI (fMRI) study of the human motor cortex poses a number of challenges due to the necessity of maintaining the subject in a natural, erect position, with free access to the environment. This paper presents the design of a superconducting magnet deriv...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2010-06, Vol.20 (3), p.1831-1834 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1834 |
---|---|
container_issue | 3 |
container_start_page | 1831 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 20 |
creator | Bertora, Franco Viale, Andrea Molinari, Elisa Fabbricatore, Pasquale |
description | The magnet design of a magnet for the functional MRI (fMRI) study of the human motor cortex poses a number of challenges due to the necessity of maintaining the subject in a natural, erect position, with free access to the environment. This paper presents the design of a superconducting magnet derived from a closed quasi-toroidal configuration. Subject access is obtained by deforming a section of the winding in such a way as to optimize the ensuing inhomogeneity and field intensity loss. The geometry of the deformed section and of the correcting structure are derived analytically and turn out to be function of a limited number of parameters. The optimization is readily achieved by a heuristic search in this limited dimensionality space. The final magnet configuration accommodates a sitting individual and produces a field intensity of 1.5 T with a total stored energy of 10 MJ; the magnet consists of planar and specially conformed, non planar coils. The maximum field on the conductor is less than 4.5T, allowing the use of NbTi wire with a current of the order of 400 A. |
doi_str_mv | 10.1109/TASC.2010.2042698 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671339135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5424103</ieee_id><sourcerecordid>746151132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-a6ce7fb832eff819dca692b0d5a4d20c6c79ee612bd0dcf6ac5518a687a964b63</originalsourceid><addsrcrecordid>eNp90U1r3DAQBmBTWkia9geEXgSlJBdvNaMPS8dg8gUJgWZ7NrOylDp4ra1lQ_LvK3eXHHroSSPNMwPiLYpT4CsAbr-vLx7rFfJ8RS5RW_OuOAalTIkK1PtccwWlQRRHxceUnjkHaaQ6Luhh54dueGJ13OYq0dTFgXUDIwYrtWZLm93_uGX39DT4iYU4sumXZ1fz4BZKPXuc5vaVxfD3_WbeUh6IU3Z1HCf_8qn4EKhP_vPhPCl-Xl2u65vy7uH6tr64K50wZipJO1-FjRHoQzBgW0fa4oa3imSL3GlXWe814KblrQuanFJgSJuKrJYbLU6Ks_3e3Rh_zz5NzbZLzvc9DT7OqamkBgUgMMvz_0rQFQhhQahMv_5Dn-M85l9nxbFCjgptVrBXbowpjT40u7Hb0viaUbPE0yzxNEs8zSGePPPtsJmSoz6MNLguvQ0iGo3Gyuy-7F3nvX9rK4kSuBB_AM5ClmI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027202529</pqid></control><display><type>article</type><title>Opening Compensation in a 1.5T Open MRI Magnet for the Functional Study of the Human Motor Cortex</title><source>IEEE Electronic Library (IEL)</source><creator>Bertora, Franco ; Viale, Andrea ; Molinari, Elisa ; Fabbricatore, Pasquale</creator><creatorcontrib>Bertora, Franco ; Viale, Andrea ; Molinari, Elisa ; Fabbricatore, Pasquale</creatorcontrib><description>The magnet design of a magnet for the functional MRI (fMRI) study of the human motor cortex poses a number of challenges due to the necessity of maintaining the subject in a natural, erect position, with free access to the environment. This paper presents the design of a superconducting magnet derived from a closed quasi-toroidal configuration. Subject access is obtained by deforming a section of the winding in such a way as to optimize the ensuing inhomogeneity and field intensity loss. The geometry of the deformed section and of the correcting structure are derived analytically and turn out to be function of a limited number of parameters. The optimization is readily achieved by a heuristic search in this limited dimensionality space. The final magnet configuration accommodates a sitting individual and produces a field intensity of 1.5 T with a total stored energy of 10 MJ; the magnet consists of planar and specially conformed, non planar coils. The maximum field on the conductor is less than 4.5T, allowing the use of NbTi wire with a current of the order of 400 A.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2010.2042698</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Brain ; Coils ; Compensation ; Conductors ; Conductors (devices) ; Cortexes ; Deformation ; Electrical engineering. Electrical power engineering ; Electrical machines ; Electromagnets ; Exact sciences and technology ; Field homogeneity ; Geometry ; Human ; Humans ; Inhomogeneity ; Magnetic analysis ; Magnetic resonance imaging ; magnets ; Miscellaneous ; Motors ; MRI ; Niobium compounds ; remote fields ; Searching ; Superconducting magnets ; Titanium compounds ; Various equipment and components ; Wire</subject><ispartof>IEEE transactions on applied superconductivity, 2010-06, Vol.20 (3), p.1831-1834</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-a6ce7fb832eff819dca692b0d5a4d20c6c79ee612bd0dcf6ac5518a687a964b63</citedby><cites>FETCH-LOGICAL-c388t-a6ce7fb832eff819dca692b0d5a4d20c6c79ee612bd0dcf6ac5518a687a964b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5424103$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23929,23930,25139,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5424103$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22862894$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bertora, Franco</creatorcontrib><creatorcontrib>Viale, Andrea</creatorcontrib><creatorcontrib>Molinari, Elisa</creatorcontrib><creatorcontrib>Fabbricatore, Pasquale</creatorcontrib><title>Opening Compensation in a 1.5T Open MRI Magnet for the Functional Study of the Human Motor Cortex</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The magnet design of a magnet for the functional MRI (fMRI) study of the human motor cortex poses a number of challenges due to the necessity of maintaining the subject in a natural, erect position, with free access to the environment. This paper presents the design of a superconducting magnet derived from a closed quasi-toroidal configuration. Subject access is obtained by deforming a section of the winding in such a way as to optimize the ensuing inhomogeneity and field intensity loss. The geometry of the deformed section and of the correcting structure are derived analytically and turn out to be function of a limited number of parameters. The optimization is readily achieved by a heuristic search in this limited dimensionality space. The final magnet configuration accommodates a sitting individual and produces a field intensity of 1.5 T with a total stored energy of 10 MJ; the magnet consists of planar and specially conformed, non planar coils. The maximum field on the conductor is less than 4.5T, allowing the use of NbTi wire with a current of the order of 400 A.</description><subject>Applied sciences</subject><subject>Brain</subject><subject>Coils</subject><subject>Compensation</subject><subject>Conductors</subject><subject>Conductors (devices)</subject><subject>Cortexes</subject><subject>Deformation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical machines</subject><subject>Electromagnets</subject><subject>Exact sciences and technology</subject><subject>Field homogeneity</subject><subject>Geometry</subject><subject>Human</subject><subject>Humans</subject><subject>Inhomogeneity</subject><subject>Magnetic analysis</subject><subject>Magnetic resonance imaging</subject><subject>magnets</subject><subject>Miscellaneous</subject><subject>Motors</subject><subject>MRI</subject><subject>Niobium compounds</subject><subject>remote fields</subject><subject>Searching</subject><subject>Superconducting magnets</subject><subject>Titanium compounds</subject><subject>Various equipment and components</subject><subject>Wire</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90U1r3DAQBmBTWkia9geEXgSlJBdvNaMPS8dg8gUJgWZ7NrOylDp4ra1lQ_LvK3eXHHroSSPNMwPiLYpT4CsAbr-vLx7rFfJ8RS5RW_OuOAalTIkK1PtccwWlQRRHxceUnjkHaaQ6Luhh54dueGJ13OYq0dTFgXUDIwYrtWZLm93_uGX39DT4iYU4sumXZ1fz4BZKPXuc5vaVxfD3_WbeUh6IU3Z1HCf_8qn4EKhP_vPhPCl-Xl2u65vy7uH6tr64K50wZipJO1-FjRHoQzBgW0fa4oa3imSL3GlXWe814KblrQuanFJgSJuKrJYbLU6Ks_3e3Rh_zz5NzbZLzvc9DT7OqamkBgUgMMvz_0rQFQhhQahMv_5Dn-M85l9nxbFCjgptVrBXbowpjT40u7Hb0viaUbPE0yzxNEs8zSGePPPtsJmSoz6MNLguvQ0iGo3Gyuy-7F3nvX9rK4kSuBB_AM5ClmI</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Bertora, Franco</creator><creator>Viale, Andrea</creator><creator>Molinari, Elisa</creator><creator>Fabbricatore, Pasquale</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>7TK</scope></search><sort><creationdate>20100601</creationdate><title>Opening Compensation in a 1.5T Open MRI Magnet for the Functional Study of the Human Motor Cortex</title><author>Bertora, Franco ; Viale, Andrea ; Molinari, Elisa ; Fabbricatore, Pasquale</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-a6ce7fb832eff819dca692b0d5a4d20c6c79ee612bd0dcf6ac5518a687a964b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Brain</topic><topic>Coils</topic><topic>Compensation</topic><topic>Conductors</topic><topic>Conductors (devices)</topic><topic>Cortexes</topic><topic>Deformation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical machines</topic><topic>Electromagnets</topic><topic>Exact sciences and technology</topic><topic>Field homogeneity</topic><topic>Geometry</topic><topic>Human</topic><topic>Humans</topic><topic>Inhomogeneity</topic><topic>Magnetic analysis</topic><topic>Magnetic resonance imaging</topic><topic>magnets</topic><topic>Miscellaneous</topic><topic>Motors</topic><topic>MRI</topic><topic>Niobium compounds</topic><topic>remote fields</topic><topic>Searching</topic><topic>Superconducting magnets</topic><topic>Titanium compounds</topic><topic>Various equipment and components</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bertora, Franco</creatorcontrib><creatorcontrib>Viale, Andrea</creatorcontrib><creatorcontrib>Molinari, Elisa</creatorcontrib><creatorcontrib>Fabbricatore, Pasquale</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Neurosciences Abstracts</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bertora, Franco</au><au>Viale, Andrea</au><au>Molinari, Elisa</au><au>Fabbricatore, Pasquale</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Opening Compensation in a 1.5T Open MRI Magnet for the Functional Study of the Human Motor Cortex</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2010-06-01</date><risdate>2010</risdate><volume>20</volume><issue>3</issue><spage>1831</spage><epage>1834</epage><pages>1831-1834</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The magnet design of a magnet for the functional MRI (fMRI) study of the human motor cortex poses a number of challenges due to the necessity of maintaining the subject in a natural, erect position, with free access to the environment. This paper presents the design of a superconducting magnet derived from a closed quasi-toroidal configuration. Subject access is obtained by deforming a section of the winding in such a way as to optimize the ensuing inhomogeneity and field intensity loss. The geometry of the deformed section and of the correcting structure are derived analytically and turn out to be function of a limited number of parameters. The optimization is readily achieved by a heuristic search in this limited dimensionality space. The final magnet configuration accommodates a sitting individual and produces a field intensity of 1.5 T with a total stored energy of 10 MJ; the magnet consists of planar and specially conformed, non planar coils. The maximum field on the conductor is less than 4.5T, allowing the use of NbTi wire with a current of the order of 400 A.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2010.2042698</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2010-06, Vol.20 (3), p.1831-1834 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671339135 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Brain Coils Compensation Conductors Conductors (devices) Cortexes Deformation Electrical engineering. Electrical power engineering Electrical machines Electromagnets Exact sciences and technology Field homogeneity Geometry Human Humans Inhomogeneity Magnetic analysis Magnetic resonance imaging magnets Miscellaneous Motors MRI Niobium compounds remote fields Searching Superconducting magnets Titanium compounds Various equipment and components Wire |
title | Opening Compensation in a 1.5T Open MRI Magnet for the Functional Study of the Human Motor Cortex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A15%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Opening%20Compensation%20in%20a%201.5T%20Open%20MRI%20Magnet%20for%20the%20Functional%20Study%20of%20the%20Human%20Motor%20Cortex&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Bertora,%20Franco&rft.date=2010-06-01&rft.volume=20&rft.issue=3&rft.spage=1831&rft.epage=1834&rft.pages=1831-1834&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2010.2042698&rft_dat=%3Cproquest_RIE%3E746151132%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027202529&rft_id=info:pmid/&rft_ieee_id=5424103&rfr_iscdi=true |