Tetrahedral Mesh Reduction Technique
Mesh simplification (decimation) refers to reducing the number of vertices and elements in an initial mesh while preserving the appearance of the dataset. In either case, some degree of simplification may be required for various reasons, for example, reducing visualization and calculation times or r...
Gespeichert in:
Veröffentlicht in: | Journal of Computational Science and Technology 2009, Vol.3(1), pp.183-195 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 195 |
---|---|
container_issue | 1 |
container_start_page | 183 |
container_title | Journal of Computational Science and Technology |
container_volume | 3 |
creator | SAVCHENKO, Maria EGOROVA, Olga HAGIWARA, Ichiro SAVCHENKO, Vladimir |
description | Mesh simplification (decimation) refers to reducing the number of vertices and elements in an initial mesh while preserving the appearance of the dataset. In either case, some degree of simplification may be required for various reasons, for example, reducing visualization and calculation times or reducing storage requirements. The goal of the algorithm discussed in the paper is to reduce the total number of tetrahedral elements in the volume meshes for acceleration of calculation processes and to test the feasibility of proposed solution. One of the decimation criterions proposed in this approach is a bending energy as a decimation metrics to select tetrahedral elements as the candidates for collapsing. The final step of our algorithm is improving a quality of the simplified mesh. For improving we apply interpolation approach based on radial basis functions. To interpolate the overall displacement, we use a volume spline and employ an approach that uses displacement of N control points as a difference between the original and deformed geometric forms of tetrahedral mesh elements |
doi_str_mv | 10.1299/jcst.3.183 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671338129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671338129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3263-a8732672751f22210a64f27d670e74fd2df04870b77c439e3161039dd263bb693</originalsourceid><addsrcrecordid>eNpNkE1LxDAQhoMouK5e_AU9eBChNR81SS-CLOsHrAhSzyFNJral265Je_Dfm7WyeBjegXneGeZF6JLgjNCiuG1NGDOWEcmO0IJISVIui_z4X3-KzkJoMeZcULpAVyWMXtdgve6SVwh18g52MmMz9EkJpu6brwnO0YnTXYCLP12ij8d1uXpON29PL6uHTWoY5SzVUkQVVNwRRyklWPPcUWG5wCByZ6l1OJcCV0KYnBXACCeYFdZGc1Xxgi3R9bx354d4Noxq2wQDXad7GKagCBeEMRk_jejNjBo_hODBqZ1vttp_K4LVPgq1j0IxFaOI8P0Mt2HUn3BAtR8b08EB_a1oOAxMrb2Cnv0A0VlmKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671338129</pqid></control><display><type>article</type><title>Tetrahedral Mesh Reduction Technique</title><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>SAVCHENKO, Maria ; EGOROVA, Olga ; HAGIWARA, Ichiro ; SAVCHENKO, Vladimir</creator><creatorcontrib>SAVCHENKO, Maria ; EGOROVA, Olga ; HAGIWARA, Ichiro ; SAVCHENKO, Vladimir</creatorcontrib><description>Mesh simplification (decimation) refers to reducing the number of vertices and elements in an initial mesh while preserving the appearance of the dataset. In either case, some degree of simplification may be required for various reasons, for example, reducing visualization and calculation times or reducing storage requirements. The goal of the algorithm discussed in the paper is to reduce the total number of tetrahedral elements in the volume meshes for acceleration of calculation processes and to test the feasibility of proposed solution. One of the decimation criterions proposed in this approach is a bending energy as a decimation metrics to select tetrahedral elements as the candidates for collapsing. The final step of our algorithm is improving a quality of the simplified mesh. For improving we apply interpolation approach based on radial basis functions. To interpolate the overall displacement, we use a volume spline and employ an approach that uses displacement of N control points as a difference between the original and deformed geometric forms of tetrahedral mesh elements</description><identifier>ISSN: 1881-6894</identifier><identifier>EISSN: 1881-6894</identifier><identifier>DOI: 10.1299/jcst.3.183</identifier><language>eng</language><publisher>The Japan Society of Mechanical Engineers</publisher><subject>Acceleration ; Algorithms ; Bending Energy ; Collapsing ; Displacement ; Mathematical analysis ; Mesh Improvement ; Mesh Reduction ; Meshes Simplification ; Radial basis function ; Reduction ; Simplification ; Tetrahedral Mesh</subject><ispartof>Journal of Computational Science and Technology, 2009, Vol.3(1), pp.183-195</ispartof><rights>2009 by The Japan Society of Mechanical Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3263-a8732672751f22210a64f27d670e74fd2df04870b77c439e3161039dd263bb693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>SAVCHENKO, Maria</creatorcontrib><creatorcontrib>EGOROVA, Olga</creatorcontrib><creatorcontrib>HAGIWARA, Ichiro</creatorcontrib><creatorcontrib>SAVCHENKO, Vladimir</creatorcontrib><title>Tetrahedral Mesh Reduction Technique</title><title>Journal of Computational Science and Technology</title><addtitle>JCST</addtitle><description>Mesh simplification (decimation) refers to reducing the number of vertices and elements in an initial mesh while preserving the appearance of the dataset. In either case, some degree of simplification may be required for various reasons, for example, reducing visualization and calculation times or reducing storage requirements. The goal of the algorithm discussed in the paper is to reduce the total number of tetrahedral elements in the volume meshes for acceleration of calculation processes and to test the feasibility of proposed solution. One of the decimation criterions proposed in this approach is a bending energy as a decimation metrics to select tetrahedral elements as the candidates for collapsing. The final step of our algorithm is improving a quality of the simplified mesh. For improving we apply interpolation approach based on radial basis functions. To interpolate the overall displacement, we use a volume spline and employ an approach that uses displacement of N control points as a difference between the original and deformed geometric forms of tetrahedral mesh elements</description><subject>Acceleration</subject><subject>Algorithms</subject><subject>Bending Energy</subject><subject>Collapsing</subject><subject>Displacement</subject><subject>Mathematical analysis</subject><subject>Mesh Improvement</subject><subject>Mesh Reduction</subject><subject>Meshes Simplification</subject><subject>Radial basis function</subject><subject>Reduction</subject><subject>Simplification</subject><subject>Tetrahedral Mesh</subject><issn>1881-6894</issn><issn>1881-6894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LxDAQhoMouK5e_AU9eBChNR81SS-CLOsHrAhSzyFNJral265Je_Dfm7WyeBjegXneGeZF6JLgjNCiuG1NGDOWEcmO0IJISVIui_z4X3-KzkJoMeZcULpAVyWMXtdgve6SVwh18g52MmMz9EkJpu6brwnO0YnTXYCLP12ij8d1uXpON29PL6uHTWoY5SzVUkQVVNwRRyklWPPcUWG5wCByZ6l1OJcCV0KYnBXACCeYFdZGc1Xxgi3R9bx354d4Noxq2wQDXad7GKagCBeEMRk_jejNjBo_hODBqZ1vttp_K4LVPgq1j0IxFaOI8P0Mt2HUn3BAtR8b08EB_a1oOAxMrb2Cnv0A0VlmKg</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>SAVCHENKO, Maria</creator><creator>EGOROVA, Olga</creator><creator>HAGIWARA, Ichiro</creator><creator>SAVCHENKO, Vladimir</creator><general>The Japan Society of Mechanical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2009</creationdate><title>Tetrahedral Mesh Reduction Technique</title><author>SAVCHENKO, Maria ; EGOROVA, Olga ; HAGIWARA, Ichiro ; SAVCHENKO, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3263-a8732672751f22210a64f27d670e74fd2df04870b77c439e3161039dd263bb693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acceleration</topic><topic>Algorithms</topic><topic>Bending Energy</topic><topic>Collapsing</topic><topic>Displacement</topic><topic>Mathematical analysis</topic><topic>Mesh Improvement</topic><topic>Mesh Reduction</topic><topic>Meshes Simplification</topic><topic>Radial basis function</topic><topic>Reduction</topic><topic>Simplification</topic><topic>Tetrahedral Mesh</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SAVCHENKO, Maria</creatorcontrib><creatorcontrib>EGOROVA, Olga</creatorcontrib><creatorcontrib>HAGIWARA, Ichiro</creatorcontrib><creatorcontrib>SAVCHENKO, Vladimir</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of Computational Science and Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SAVCHENKO, Maria</au><au>EGOROVA, Olga</au><au>HAGIWARA, Ichiro</au><au>SAVCHENKO, Vladimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tetrahedral Mesh Reduction Technique</atitle><jtitle>Journal of Computational Science and Technology</jtitle><addtitle>JCST</addtitle><date>2009</date><risdate>2009</risdate><volume>3</volume><issue>1</issue><spage>183</spage><epage>195</epage><pages>183-195</pages><issn>1881-6894</issn><eissn>1881-6894</eissn><abstract>Mesh simplification (decimation) refers to reducing the number of vertices and elements in an initial mesh while preserving the appearance of the dataset. In either case, some degree of simplification may be required for various reasons, for example, reducing visualization and calculation times or reducing storage requirements. The goal of the algorithm discussed in the paper is to reduce the total number of tetrahedral elements in the volume meshes for acceleration of calculation processes and to test the feasibility of proposed solution. One of the decimation criterions proposed in this approach is a bending energy as a decimation metrics to select tetrahedral elements as the candidates for collapsing. The final step of our algorithm is improving a quality of the simplified mesh. For improving we apply interpolation approach based on radial basis functions. To interpolate the overall displacement, we use a volume spline and employ an approach that uses displacement of N control points as a difference between the original and deformed geometric forms of tetrahedral mesh elements</abstract><pub>The Japan Society of Mechanical Engineers</pub><doi>10.1299/jcst.3.183</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1881-6894 |
ispartof | Journal of Computational Science and Technology, 2009, Vol.3(1), pp.183-195 |
issn | 1881-6894 1881-6894 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671338129 |
source | J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; EZB-FREE-00999 freely available EZB journals |
subjects | Acceleration Algorithms Bending Energy Collapsing Displacement Mathematical analysis Mesh Improvement Mesh Reduction Meshes Simplification Radial basis function Reduction Simplification Tetrahedral Mesh |
title | Tetrahedral Mesh Reduction Technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A10%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tetrahedral%20Mesh%20Reduction%20Technique&rft.jtitle=Journal%20of%20Computational%20Science%20and%20Technology&rft.au=SAVCHENKO,%20Maria&rft.date=2009&rft.volume=3&rft.issue=1&rft.spage=183&rft.epage=195&rft.pages=183-195&rft.issn=1881-6894&rft.eissn=1881-6894&rft_id=info:doi/10.1299/jcst.3.183&rft_dat=%3Cproquest_cross%3E1671338129%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671338129&rft_id=info:pmid/&rfr_iscdi=true |