ERROR ANALYSIS FOR A MIMETIC DISCRETIZATION OF THE STEADY STOKES PROBLEM ON POLYHEDRAL MESHES

We present the development, convergence analysis, and numerical tests of the mimetic finite difference method for the Stokes problem on two-dimensional polygonal and three-dimensional polyhedral meshes.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2010-01, Vol.48 (4), p.1419-1443
Hauptverfasser: DA VEIGA, L. BEIRÃO, LIPNIKOV, K., MANZINI, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1443
container_issue 4
container_start_page 1419
container_title SIAM journal on numerical analysis
container_volume 48
creator DA VEIGA, L. BEIRÃO
LIPNIKOV, K.
MANZINI, G.
description We present the development, convergence analysis, and numerical tests of the mimetic finite difference method for the Stokes problem on two-dimensional polygonal and three-dimensional polyhedral meshes.
doi_str_mv 10.1137/090757411
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671336811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41149008</jstor_id><sourcerecordid>41149008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-5c132b49a037f39844e0f5d7d0b5647b05aa8d138811cfd55b3353bcf5e75e3c3</originalsourceid><addsrcrecordid>eNpdkE9Lw0AQxRdRsFYPfgBh8aSH6E4nm02OMd3aYNKUJB4qSMifDbS0pmbbg9_eLZUePL15vN8MwyPkFtgTAIpn5jHBhQ1wRgbAPG4JEOycDBhDxwJ75F2SK61XzHgXcEA-ZZomKfVnfrTIwoxODobGYSzzMKDjMAtSM334eZjMaDKh-VTSLJf-eGEkeZMZnafJSyRjavJ5Ei2mcpz6EY1lNpXZNbloy7VWN386JO8TmQdTK0pew8CPrBoBdhavAUeV7ZUMRYuea9uKtbwRDau4Y4uK8bJ0G0DXBajbhvMKkWNVt1wJrrDGIXk43t323fde6V2xWepardfll-r2ugBHAKJj1g16_w9ddfv-y3xXuMIzzQlTzZA8HqG677TuVVts--Wm7H8KYMWh5-LUs2HvjuxK77r-BJrI9hhz8RfhtG64</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>879741700</pqid></control><display><type>article</type><title>ERROR ANALYSIS FOR A MIMETIC DISCRETIZATION OF THE STEADY STOKES PROBLEM ON POLYHEDRAL MESHES</title><source>SIAM Journals Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>DA VEIGA, L. BEIRÃO ; LIPNIKOV, K. ; MANZINI, G.</creator><creatorcontrib>DA VEIGA, L. BEIRÃO ; LIPNIKOV, K. ; MANZINI, G.</creatorcontrib><description>We present the development, convergence analysis, and numerical tests of the mimetic finite difference method for the Stokes problem on two-dimensional polygonal and three-dimensional polyhedral meshes.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/090757411</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Approximation ; Cauchy Schwarz inequality ; Convergence ; Degrees of freedom ; Discretization ; Error analysis ; Finite difference method ; Finite difference methods ; Fluid flow ; Geometric shapes ; Interpolation ; Mathematical analysis ; Mathematical vectors ; Numerical analysis ; Polyhedrons ; Studies ; Two dimensional ; Vertices</subject><ispartof>SIAM journal on numerical analysis, 2010-01, Vol.48 (4), p.1419-1443</ispartof><rights>Copyright ©2011 Society for Industrial and Applied Mathematics</rights><rights>Copyright Society for Industrial and Applied Mathematics 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-5c132b49a037f39844e0f5d7d0b5647b05aa8d138811cfd55b3353bcf5e75e3c3</citedby><cites>FETCH-LOGICAL-c311t-5c132b49a037f39844e0f5d7d0b5647b05aa8d138811cfd55b3353bcf5e75e3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41149008$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41149008$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,782,786,805,834,3186,27931,27932,58024,58028,58257,58261</link.rule.ids></links><search><creatorcontrib>DA VEIGA, L. BEIRÃO</creatorcontrib><creatorcontrib>LIPNIKOV, K.</creatorcontrib><creatorcontrib>MANZINI, G.</creatorcontrib><title>ERROR ANALYSIS FOR A MIMETIC DISCRETIZATION OF THE STEADY STOKES PROBLEM ON POLYHEDRAL MESHES</title><title>SIAM journal on numerical analysis</title><description>We present the development, convergence analysis, and numerical tests of the mimetic finite difference method for the Stokes problem on two-dimensional polygonal and three-dimensional polyhedral meshes.</description><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Cauchy Schwarz inequality</subject><subject>Convergence</subject><subject>Degrees of freedom</subject><subject>Discretization</subject><subject>Error analysis</subject><subject>Finite difference method</subject><subject>Finite difference methods</subject><subject>Fluid flow</subject><subject>Geometric shapes</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Mathematical vectors</subject><subject>Numerical analysis</subject><subject>Polyhedrons</subject><subject>Studies</subject><subject>Two dimensional</subject><subject>Vertices</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkE9Lw0AQxRdRsFYPfgBh8aSH6E4nm02OMd3aYNKUJB4qSMifDbS0pmbbg9_eLZUePL15vN8MwyPkFtgTAIpn5jHBhQ1wRgbAPG4JEOycDBhDxwJ75F2SK61XzHgXcEA-ZZomKfVnfrTIwoxODobGYSzzMKDjMAtSM334eZjMaDKh-VTSLJf-eGEkeZMZnafJSyRjavJ5Ei2mcpz6EY1lNpXZNbloy7VWN386JO8TmQdTK0pew8CPrBoBdhavAUeV7ZUMRYuea9uKtbwRDau4Y4uK8bJ0G0DXBajbhvMKkWNVt1wJrrDGIXk43t323fde6V2xWepardfll-r2ugBHAKJj1g16_w9ddfv-y3xXuMIzzQlTzZA8HqG677TuVVts--Wm7H8KYMWh5-LUs2HvjuxK77r-BJrI9hhz8RfhtG64</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>DA VEIGA, L. BEIRÃO</creator><creator>LIPNIKOV, K.</creator><creator>MANZINI, G.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100101</creationdate><title>ERROR ANALYSIS FOR A MIMETIC DISCRETIZATION OF THE STEADY STOKES PROBLEM ON POLYHEDRAL MESHES</title><author>DA VEIGA, L. BEIRÃO ; LIPNIKOV, K. ; MANZINI, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-5c132b49a037f39844e0f5d7d0b5647b05aa8d138811cfd55b3353bcf5e75e3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Cauchy Schwarz inequality</topic><topic>Convergence</topic><topic>Degrees of freedom</topic><topic>Discretization</topic><topic>Error analysis</topic><topic>Finite difference method</topic><topic>Finite difference methods</topic><topic>Fluid flow</topic><topic>Geometric shapes</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Mathematical vectors</topic><topic>Numerical analysis</topic><topic>Polyhedrons</topic><topic>Studies</topic><topic>Two dimensional</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DA VEIGA, L. BEIRÃO</creatorcontrib><creatorcontrib>LIPNIKOV, K.</creatorcontrib><creatorcontrib>MANZINI, G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DA VEIGA, L. BEIRÃO</au><au>LIPNIKOV, K.</au><au>MANZINI, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ERROR ANALYSIS FOR A MIMETIC DISCRETIZATION OF THE STEADY STOKES PROBLEM ON POLYHEDRAL MESHES</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>48</volume><issue>4</issue><spage>1419</spage><epage>1443</epage><pages>1419-1443</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>We present the development, convergence analysis, and numerical tests of the mimetic finite difference method for the Stokes problem on two-dimensional polygonal and three-dimensional polyhedral meshes.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/090757411</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 2010-01, Vol.48 (4), p.1419-1443
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_miscellaneous_1671336811
source SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Applied mathematics
Approximation
Cauchy Schwarz inequality
Convergence
Degrees of freedom
Discretization
Error analysis
Finite difference method
Finite difference methods
Fluid flow
Geometric shapes
Interpolation
Mathematical analysis
Mathematical vectors
Numerical analysis
Polyhedrons
Studies
Two dimensional
Vertices
title ERROR ANALYSIS FOR A MIMETIC DISCRETIZATION OF THE STEADY STOKES PROBLEM ON POLYHEDRAL MESHES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T03%3A59%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ERROR%20ANALYSIS%20FOR%20A%20MIMETIC%20DISCRETIZATION%20OF%20THE%20STEADY%20STOKES%20PROBLEM%20ON%20POLYHEDRAL%20MESHES&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=DA%20VEIGA,%20L.%20BEIR%C3%83O&rft.date=2010-01-01&rft.volume=48&rft.issue=4&rft.spage=1419&rft.epage=1443&rft.pages=1419-1443&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/090757411&rft_dat=%3Cjstor_proqu%3E41149008%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=879741700&rft_id=info:pmid/&rft_jstor_id=41149008&rfr_iscdi=true