Effect of stacking fault energy on deformation behavior of cryo-rolled copper and copper alloys
► Rolling of pure copper and Cu–12.1%Al–4.1%Zn at liquid nitrogen temperature. ► TEM observation shows that reduced stacking fault energy results in significant twinning activity. ► Investigating mechanical properties and deformation behavior via tensile and stress relaxation tests. ► Network disloc...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2011-11, Vol.529, p.230-236 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 236 |
---|---|
container_issue | |
container_start_page | 230 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 529 |
creator | Bahmanpour, H. Kauffmann, A. Khoshkhoo, M.S. Youssef, K.M. Mula, S. Freudenberger, J. Eckert, J. Scattergood, R.O. Koch, C.C. |
description | ► Rolling of pure copper and Cu–12.1%Al–4.1%Zn at liquid nitrogen temperature. ► TEM observation shows that reduced stacking fault energy results in significant twinning activity. ► Investigating mechanical properties and deformation behavior via tensile and stress relaxation tests. ► Network dislocation strengthening model used to describe yield strength of cryo-rolled samples.
Pure copper and Cu–12.1
at.%Al–4.1
at.%Zn alloy were subjected to rolling in liquid nitrogen. TEM studies showed that dynamic recovery during the deformation process was effectively suppressed and hence microstructures with dislocation substructure and deformation twins were formed. Mechanical properties were assessed via microtensile testing that shows improved yield strength, 520
±
20
MPa, and ductility, 22%, in the case of pure copper. Alloying with Al and Zn results in reduction in stacking fault energy (SFE) which can contribute to enhanced strength and good ductility. Physical activation volume obtained via stress relaxation tests is 26
b
3, and 8
b
3 for pure copper, and Cu–12.1
at.%Al–4.1
at.%Zn, respectively. The effect of SFE on work hardening rate of samples is discussed. Although twinning is observed in the alloy, it is concluded that network dislocation strengthening plays the major role in determining the mechanical properties. |
doi_str_mv | 10.1016/j.msea.2011.09.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671335917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509311009828</els_id><sourcerecordid>1671335917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-879c2252d54610f51099ff6168d20b32124e204bb5635885e012f22eeb9d5db93</originalsourceid><addsrcrecordid>eNp9kEFr3DAQhUVJoZu0f6AnXwK52JmRLNmCXkJI2kIgl_YsZHmUaqO1tpI3sP--NhuSW0_zDu-9mfkY-4rQIKC63ja7QrbhgNiAboDzD2yDfSfqVgt1xjagOdYStPjEzkvZAgC2IDfM3HlPbq6Sr8ps3XOYnipvD3GuaKL8dKzSVI3kU97ZOSx6oD_2JaS8Blw-pjqnGGmsXNrvKVd2epcxpmP5zD56Gwt9eZ0X7Pf93a_bH_XD4_eftzcPtWu5nuu-045zyUfZKgQvEbT2XqHqRw6D4Mhb4tAOg1RC9r0kQO45Jxr0KMdBiwt2derd5_T3QGU2u1AcxWgnSodiUHUohNTYLVZ-srqcSsnkzT6Hnc1Hg2BWmmZrVppmpWlAm4XmErp87bfF2eiznVwob0neKqE6td7x7eSj5dmXQNkUF2hyNIa8cDZjCv9b8w-G2Ypm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671335917</pqid></control><display><type>article</type><title>Effect of stacking fault energy on deformation behavior of cryo-rolled copper and copper alloys</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bahmanpour, H. ; Kauffmann, A. ; Khoshkhoo, M.S. ; Youssef, K.M. ; Mula, S. ; Freudenberger, J. ; Eckert, J. ; Scattergood, R.O. ; Koch, C.C.</creator><creatorcontrib>Bahmanpour, H. ; Kauffmann, A. ; Khoshkhoo, M.S. ; Youssef, K.M. ; Mula, S. ; Freudenberger, J. ; Eckert, J. ; Scattergood, R.O. ; Koch, C.C.</creatorcontrib><description>► Rolling of pure copper and Cu–12.1%Al–4.1%Zn at liquid nitrogen temperature. ► TEM observation shows that reduced stacking fault energy results in significant twinning activity. ► Investigating mechanical properties and deformation behavior via tensile and stress relaxation tests. ► Network dislocation strengthening model used to describe yield strength of cryo-rolled samples.
Pure copper and Cu–12.1
at.%Al–4.1
at.%Zn alloy were subjected to rolling in liquid nitrogen. TEM studies showed that dynamic recovery during the deformation process was effectively suppressed and hence microstructures with dislocation substructure and deformation twins were formed. Mechanical properties were assessed via microtensile testing that shows improved yield strength, 520
±
20
MPa, and ductility, 22%, in the case of pure copper. Alloying with Al and Zn results in reduction in stacking fault energy (SFE) which can contribute to enhanced strength and good ductility. Physical activation volume obtained via stress relaxation tests is 26
b
3, and 8
b
3 for pure copper, and Cu–12.1
at.%Al–4.1
at.%Zn, respectively. The effect of SFE on work hardening rate of samples is discussed. Although twinning is observed in the alloy, it is concluded that network dislocation strengthening plays the major role in determining the mechanical properties.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2011.09.022</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Activation volume ; Alloying ; Applied sciences ; Condensed matter: structure, mechanical and thermal properties ; Copper ; COPPER ALLOYS (40 TO 99.3 CU) ; Copper base alloys ; Cu based alloys ; DEFORMATION ; Deformation and plasticity (including yield, ductility, and superplasticity) ; Deformation behavior ; Dislocations ; Elasticity. Plasticity ; Exact sciences and technology ; Forming ; Mechanical and acoustical properties of condensed matter ; MECHANICAL PROPERTIES ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Mechanical properties of solids ; Metals. Metallurgy ; Microstructure ; MICROSTRUCTURES ; Physics ; Production techniques ; PROPERTIES ; Rolling ; Stacking fault energy ; STACKING FAULTS ; Transmission electron microscopy ; Work hardening rate</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2011-11, Vol.529, p.230-236</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-879c2252d54610f51099ff6168d20b32124e204bb5635885e012f22eeb9d5db93</citedby><cites>FETCH-LOGICAL-c429t-879c2252d54610f51099ff6168d20b32124e204bb5635885e012f22eeb9d5db93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2011.09.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24636769$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bahmanpour, H.</creatorcontrib><creatorcontrib>Kauffmann, A.</creatorcontrib><creatorcontrib>Khoshkhoo, M.S.</creatorcontrib><creatorcontrib>Youssef, K.M.</creatorcontrib><creatorcontrib>Mula, S.</creatorcontrib><creatorcontrib>Freudenberger, J.</creatorcontrib><creatorcontrib>Eckert, J.</creatorcontrib><creatorcontrib>Scattergood, R.O.</creatorcontrib><creatorcontrib>Koch, C.C.</creatorcontrib><title>Effect of stacking fault energy on deformation behavior of cryo-rolled copper and copper alloys</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>► Rolling of pure copper and Cu–12.1%Al–4.1%Zn at liquid nitrogen temperature. ► TEM observation shows that reduced stacking fault energy results in significant twinning activity. ► Investigating mechanical properties and deformation behavior via tensile and stress relaxation tests. ► Network dislocation strengthening model used to describe yield strength of cryo-rolled samples.
Pure copper and Cu–12.1
at.%Al–4.1
at.%Zn alloy were subjected to rolling in liquid nitrogen. TEM studies showed that dynamic recovery during the deformation process was effectively suppressed and hence microstructures with dislocation substructure and deformation twins were formed. Mechanical properties were assessed via microtensile testing that shows improved yield strength, 520
±
20
MPa, and ductility, 22%, in the case of pure copper. Alloying with Al and Zn results in reduction in stacking fault energy (SFE) which can contribute to enhanced strength and good ductility. Physical activation volume obtained via stress relaxation tests is 26
b
3, and 8
b
3 for pure copper, and Cu–12.1
at.%Al–4.1
at.%Zn, respectively. The effect of SFE on work hardening rate of samples is discussed. Although twinning is observed in the alloy, it is concluded that network dislocation strengthening plays the major role in determining the mechanical properties.</description><subject>Activation volume</subject><subject>Alloying</subject><subject>Applied sciences</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Copper</subject><subject>COPPER ALLOYS (40 TO 99.3 CU)</subject><subject>Copper base alloys</subject><subject>Cu based alloys</subject><subject>DEFORMATION</subject><subject>Deformation and plasticity (including yield, ductility, and superplasticity)</subject><subject>Deformation behavior</subject><subject>Dislocations</subject><subject>Elasticity. Plasticity</subject><subject>Exact sciences and technology</subject><subject>Forming</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>MECHANICAL PROPERTIES</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Mechanical properties of solids</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>MICROSTRUCTURES</subject><subject>Physics</subject><subject>Production techniques</subject><subject>PROPERTIES</subject><subject>Rolling</subject><subject>Stacking fault energy</subject><subject>STACKING FAULTS</subject><subject>Transmission electron microscopy</subject><subject>Work hardening rate</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEFr3DAQhUVJoZu0f6AnXwK52JmRLNmCXkJI2kIgl_YsZHmUaqO1tpI3sP--NhuSW0_zDu-9mfkY-4rQIKC63ja7QrbhgNiAboDzD2yDfSfqVgt1xjagOdYStPjEzkvZAgC2IDfM3HlPbq6Sr8ps3XOYnipvD3GuaKL8dKzSVI3kU97ZOSx6oD_2JaS8Blw-pjqnGGmsXNrvKVd2epcxpmP5zD56Gwt9eZ0X7Pf93a_bH_XD4_eftzcPtWu5nuu-045zyUfZKgQvEbT2XqHqRw6D4Mhb4tAOg1RC9r0kQO45Jxr0KMdBiwt2derd5_T3QGU2u1AcxWgnSodiUHUohNTYLVZ-srqcSsnkzT6Hnc1Hg2BWmmZrVppmpWlAm4XmErp87bfF2eiznVwob0neKqE6td7x7eSj5dmXQNkUF2hyNIa8cDZjCv9b8w-G2Ypm</recordid><startdate>20111125</startdate><enddate>20111125</enddate><creator>Bahmanpour, H.</creator><creator>Kauffmann, A.</creator><creator>Khoshkhoo, M.S.</creator><creator>Youssef, K.M.</creator><creator>Mula, S.</creator><creator>Freudenberger, J.</creator><creator>Eckert, J.</creator><creator>Scattergood, R.O.</creator><creator>Koch, C.C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20111125</creationdate><title>Effect of stacking fault energy on deformation behavior of cryo-rolled copper and copper alloys</title><author>Bahmanpour, H. ; Kauffmann, A. ; Khoshkhoo, M.S. ; Youssef, K.M. ; Mula, S. ; Freudenberger, J. ; Eckert, J. ; Scattergood, R.O. ; Koch, C.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-879c2252d54610f51099ff6168d20b32124e204bb5635885e012f22eeb9d5db93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Activation volume</topic><topic>Alloying</topic><topic>Applied sciences</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Copper</topic><topic>COPPER ALLOYS (40 TO 99.3 CU)</topic><topic>Copper base alloys</topic><topic>Cu based alloys</topic><topic>DEFORMATION</topic><topic>Deformation and plasticity (including yield, ductility, and superplasticity)</topic><topic>Deformation behavior</topic><topic>Dislocations</topic><topic>Elasticity. Plasticity</topic><topic>Exact sciences and technology</topic><topic>Forming</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>MECHANICAL PROPERTIES</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Mechanical properties of solids</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>MICROSTRUCTURES</topic><topic>Physics</topic><topic>Production techniques</topic><topic>PROPERTIES</topic><topic>Rolling</topic><topic>Stacking fault energy</topic><topic>STACKING FAULTS</topic><topic>Transmission electron microscopy</topic><topic>Work hardening rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bahmanpour, H.</creatorcontrib><creatorcontrib>Kauffmann, A.</creatorcontrib><creatorcontrib>Khoshkhoo, M.S.</creatorcontrib><creatorcontrib>Youssef, K.M.</creatorcontrib><creatorcontrib>Mula, S.</creatorcontrib><creatorcontrib>Freudenberger, J.</creatorcontrib><creatorcontrib>Eckert, J.</creatorcontrib><creatorcontrib>Scattergood, R.O.</creatorcontrib><creatorcontrib>Koch, C.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bahmanpour, H.</au><au>Kauffmann, A.</au><au>Khoshkhoo, M.S.</au><au>Youssef, K.M.</au><au>Mula, S.</au><au>Freudenberger, J.</au><au>Eckert, J.</au><au>Scattergood, R.O.</au><au>Koch, C.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of stacking fault energy on deformation behavior of cryo-rolled copper and copper alloys</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2011-11-25</date><risdate>2011</risdate><volume>529</volume><spage>230</spage><epage>236</epage><pages>230-236</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>► Rolling of pure copper and Cu–12.1%Al–4.1%Zn at liquid nitrogen temperature. ► TEM observation shows that reduced stacking fault energy results in significant twinning activity. ► Investigating mechanical properties and deformation behavior via tensile and stress relaxation tests. ► Network dislocation strengthening model used to describe yield strength of cryo-rolled samples.
Pure copper and Cu–12.1
at.%Al–4.1
at.%Zn alloy were subjected to rolling in liquid nitrogen. TEM studies showed that dynamic recovery during the deformation process was effectively suppressed and hence microstructures with dislocation substructure and deformation twins were formed. Mechanical properties were assessed via microtensile testing that shows improved yield strength, 520
±
20
MPa, and ductility, 22%, in the case of pure copper. Alloying with Al and Zn results in reduction in stacking fault energy (SFE) which can contribute to enhanced strength and good ductility. Physical activation volume obtained via stress relaxation tests is 26
b
3, and 8
b
3 for pure copper, and Cu–12.1
at.%Al–4.1
at.%Zn, respectively. The effect of SFE on work hardening rate of samples is discussed. Although twinning is observed in the alloy, it is concluded that network dislocation strengthening plays the major role in determining the mechanical properties.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2011.09.022</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2011-11, Vol.529, p.230-236 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671335917 |
source | Access via ScienceDirect (Elsevier) |
subjects | Activation volume Alloying Applied sciences Condensed matter: structure, mechanical and thermal properties Copper COPPER ALLOYS (40 TO 99.3 CU) Copper base alloys Cu based alloys DEFORMATION Deformation and plasticity (including yield, ductility, and superplasticity) Deformation behavior Dislocations Elasticity. Plasticity Exact sciences and technology Forming Mechanical and acoustical properties of condensed matter MECHANICAL PROPERTIES Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Mechanical properties of solids Metals. Metallurgy Microstructure MICROSTRUCTURES Physics Production techniques PROPERTIES Rolling Stacking fault energy STACKING FAULTS Transmission electron microscopy Work hardening rate |
title | Effect of stacking fault energy on deformation behavior of cryo-rolled copper and copper alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A49%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20stacking%20fault%20energy%20on%20deformation%20behavior%20of%20cryo-rolled%20copper%20and%20copper%20alloys&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Bahmanpour,%20H.&rft.date=2011-11-25&rft.volume=529&rft.spage=230&rft.epage=236&rft.pages=230-236&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2011.09.022&rft_dat=%3Cproquest_cross%3E1671335917%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671335917&rft_id=info:pmid/&rft_els_id=S0921509311009828&rfr_iscdi=true |