Effect of stacking fault energy on deformation behavior of cryo-rolled copper and copper alloys

► Rolling of pure copper and Cu–12.1%Al–4.1%Zn at liquid nitrogen temperature. ► TEM observation shows that reduced stacking fault energy results in significant twinning activity. ► Investigating mechanical properties and deformation behavior via tensile and stress relaxation tests. ► Network disloc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2011-11, Vol.529, p.230-236
Hauptverfasser: Bahmanpour, H., Kauffmann, A., Khoshkhoo, M.S., Youssef, K.M., Mula, S., Freudenberger, J., Eckert, J., Scattergood, R.O., Koch, C.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 236
container_issue
container_start_page 230
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 529
creator Bahmanpour, H.
Kauffmann, A.
Khoshkhoo, M.S.
Youssef, K.M.
Mula, S.
Freudenberger, J.
Eckert, J.
Scattergood, R.O.
Koch, C.C.
description ► Rolling of pure copper and Cu–12.1%Al–4.1%Zn at liquid nitrogen temperature. ► TEM observation shows that reduced stacking fault energy results in significant twinning activity. ► Investigating mechanical properties and deformation behavior via tensile and stress relaxation tests. ► Network dislocation strengthening model used to describe yield strength of cryo-rolled samples. Pure copper and Cu–12.1 at.%Al–4.1 at.%Zn alloy were subjected to rolling in liquid nitrogen. TEM studies showed that dynamic recovery during the deformation process was effectively suppressed and hence microstructures with dislocation substructure and deformation twins were formed. Mechanical properties were assessed via microtensile testing that shows improved yield strength, 520 ± 20 MPa, and ductility, 22%, in the case of pure copper. Alloying with Al and Zn results in reduction in stacking fault energy (SFE) which can contribute to enhanced strength and good ductility. Physical activation volume obtained via stress relaxation tests is 26 b 3, and 8 b 3 for pure copper, and Cu–12.1 at.%Al–4.1 at.%Zn, respectively. The effect of SFE on work hardening rate of samples is discussed. Although twinning is observed in the alloy, it is concluded that network dislocation strengthening plays the major role in determining the mechanical properties.
doi_str_mv 10.1016/j.msea.2011.09.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671335917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509311009828</els_id><sourcerecordid>1671335917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-879c2252d54610f51099ff6168d20b32124e204bb5635885e012f22eeb9d5db93</originalsourceid><addsrcrecordid>eNp9kEFr3DAQhUVJoZu0f6AnXwK52JmRLNmCXkJI2kIgl_YsZHmUaqO1tpI3sP--NhuSW0_zDu-9mfkY-4rQIKC63ja7QrbhgNiAboDzD2yDfSfqVgt1xjagOdYStPjEzkvZAgC2IDfM3HlPbq6Sr8ps3XOYnipvD3GuaKL8dKzSVI3kU97ZOSx6oD_2JaS8Blw-pjqnGGmsXNrvKVd2epcxpmP5zD56Gwt9eZ0X7Pf93a_bH_XD4_eftzcPtWu5nuu-045zyUfZKgQvEbT2XqHqRw6D4Mhb4tAOg1RC9r0kQO45Jxr0KMdBiwt2derd5_T3QGU2u1AcxWgnSodiUHUohNTYLVZ-srqcSsnkzT6Hnc1Hg2BWmmZrVppmpWlAm4XmErp87bfF2eiznVwob0neKqE6td7x7eSj5dmXQNkUF2hyNIa8cDZjCv9b8w-G2Ypm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671335917</pqid></control><display><type>article</type><title>Effect of stacking fault energy on deformation behavior of cryo-rolled copper and copper alloys</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bahmanpour, H. ; Kauffmann, A. ; Khoshkhoo, M.S. ; Youssef, K.M. ; Mula, S. ; Freudenberger, J. ; Eckert, J. ; Scattergood, R.O. ; Koch, C.C.</creator><creatorcontrib>Bahmanpour, H. ; Kauffmann, A. ; Khoshkhoo, M.S. ; Youssef, K.M. ; Mula, S. ; Freudenberger, J. ; Eckert, J. ; Scattergood, R.O. ; Koch, C.C.</creatorcontrib><description>► Rolling of pure copper and Cu–12.1%Al–4.1%Zn at liquid nitrogen temperature. ► TEM observation shows that reduced stacking fault energy results in significant twinning activity. ► Investigating mechanical properties and deformation behavior via tensile and stress relaxation tests. ► Network dislocation strengthening model used to describe yield strength of cryo-rolled samples. Pure copper and Cu–12.1 at.%Al–4.1 at.%Zn alloy were subjected to rolling in liquid nitrogen. TEM studies showed that dynamic recovery during the deformation process was effectively suppressed and hence microstructures with dislocation substructure and deformation twins were formed. Mechanical properties were assessed via microtensile testing that shows improved yield strength, 520 ± 20 MPa, and ductility, 22%, in the case of pure copper. Alloying with Al and Zn results in reduction in stacking fault energy (SFE) which can contribute to enhanced strength and good ductility. Physical activation volume obtained via stress relaxation tests is 26 b 3, and 8 b 3 for pure copper, and Cu–12.1 at.%Al–4.1 at.%Zn, respectively. The effect of SFE on work hardening rate of samples is discussed. Although twinning is observed in the alloy, it is concluded that network dislocation strengthening plays the major role in determining the mechanical properties.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2011.09.022</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Activation volume ; Alloying ; Applied sciences ; Condensed matter: structure, mechanical and thermal properties ; Copper ; COPPER ALLOYS (40 TO 99.3 CU) ; Copper base alloys ; Cu based alloys ; DEFORMATION ; Deformation and plasticity (including yield, ductility, and superplasticity) ; Deformation behavior ; Dislocations ; Elasticity. Plasticity ; Exact sciences and technology ; Forming ; Mechanical and acoustical properties of condensed matter ; MECHANICAL PROPERTIES ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Mechanical properties of solids ; Metals. Metallurgy ; Microstructure ; MICROSTRUCTURES ; Physics ; Production techniques ; PROPERTIES ; Rolling ; Stacking fault energy ; STACKING FAULTS ; Transmission electron microscopy ; Work hardening rate</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2011-11, Vol.529, p.230-236</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-879c2252d54610f51099ff6168d20b32124e204bb5635885e012f22eeb9d5db93</citedby><cites>FETCH-LOGICAL-c429t-879c2252d54610f51099ff6168d20b32124e204bb5635885e012f22eeb9d5db93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2011.09.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24636769$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bahmanpour, H.</creatorcontrib><creatorcontrib>Kauffmann, A.</creatorcontrib><creatorcontrib>Khoshkhoo, M.S.</creatorcontrib><creatorcontrib>Youssef, K.M.</creatorcontrib><creatorcontrib>Mula, S.</creatorcontrib><creatorcontrib>Freudenberger, J.</creatorcontrib><creatorcontrib>Eckert, J.</creatorcontrib><creatorcontrib>Scattergood, R.O.</creatorcontrib><creatorcontrib>Koch, C.C.</creatorcontrib><title>Effect of stacking fault energy on deformation behavior of cryo-rolled copper and copper alloys</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>► Rolling of pure copper and Cu–12.1%Al–4.1%Zn at liquid nitrogen temperature. ► TEM observation shows that reduced stacking fault energy results in significant twinning activity. ► Investigating mechanical properties and deformation behavior via tensile and stress relaxation tests. ► Network dislocation strengthening model used to describe yield strength of cryo-rolled samples. Pure copper and Cu–12.1 at.%Al–4.1 at.%Zn alloy were subjected to rolling in liquid nitrogen. TEM studies showed that dynamic recovery during the deformation process was effectively suppressed and hence microstructures with dislocation substructure and deformation twins were formed. Mechanical properties were assessed via microtensile testing that shows improved yield strength, 520 ± 20 MPa, and ductility, 22%, in the case of pure copper. Alloying with Al and Zn results in reduction in stacking fault energy (SFE) which can contribute to enhanced strength and good ductility. Physical activation volume obtained via stress relaxation tests is 26 b 3, and 8 b 3 for pure copper, and Cu–12.1 at.%Al–4.1 at.%Zn, respectively. The effect of SFE on work hardening rate of samples is discussed. Although twinning is observed in the alloy, it is concluded that network dislocation strengthening plays the major role in determining the mechanical properties.</description><subject>Activation volume</subject><subject>Alloying</subject><subject>Applied sciences</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Copper</subject><subject>COPPER ALLOYS (40 TO 99.3 CU)</subject><subject>Copper base alloys</subject><subject>Cu based alloys</subject><subject>DEFORMATION</subject><subject>Deformation and plasticity (including yield, ductility, and superplasticity)</subject><subject>Deformation behavior</subject><subject>Dislocations</subject><subject>Elasticity. Plasticity</subject><subject>Exact sciences and technology</subject><subject>Forming</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>MECHANICAL PROPERTIES</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Mechanical properties of solids</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>MICROSTRUCTURES</subject><subject>Physics</subject><subject>Production techniques</subject><subject>PROPERTIES</subject><subject>Rolling</subject><subject>Stacking fault energy</subject><subject>STACKING FAULTS</subject><subject>Transmission electron microscopy</subject><subject>Work hardening rate</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEFr3DAQhUVJoZu0f6AnXwK52JmRLNmCXkJI2kIgl_YsZHmUaqO1tpI3sP--NhuSW0_zDu-9mfkY-4rQIKC63ja7QrbhgNiAboDzD2yDfSfqVgt1xjagOdYStPjEzkvZAgC2IDfM3HlPbq6Sr8ps3XOYnipvD3GuaKL8dKzSVI3kU97ZOSx6oD_2JaS8Blw-pjqnGGmsXNrvKVd2epcxpmP5zD56Gwt9eZ0X7Pf93a_bH_XD4_eftzcPtWu5nuu-045zyUfZKgQvEbT2XqHqRw6D4Mhb4tAOg1RC9r0kQO45Jxr0KMdBiwt2derd5_T3QGU2u1AcxWgnSodiUHUohNTYLVZ-srqcSsnkzT6Hnc1Hg2BWmmZrVppmpWlAm4XmErp87bfF2eiznVwob0neKqE6td7x7eSj5dmXQNkUF2hyNIa8cDZjCv9b8w-G2Ypm</recordid><startdate>20111125</startdate><enddate>20111125</enddate><creator>Bahmanpour, H.</creator><creator>Kauffmann, A.</creator><creator>Khoshkhoo, M.S.</creator><creator>Youssef, K.M.</creator><creator>Mula, S.</creator><creator>Freudenberger, J.</creator><creator>Eckert, J.</creator><creator>Scattergood, R.O.</creator><creator>Koch, C.C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20111125</creationdate><title>Effect of stacking fault energy on deformation behavior of cryo-rolled copper and copper alloys</title><author>Bahmanpour, H. ; Kauffmann, A. ; Khoshkhoo, M.S. ; Youssef, K.M. ; Mula, S. ; Freudenberger, J. ; Eckert, J. ; Scattergood, R.O. ; Koch, C.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-879c2252d54610f51099ff6168d20b32124e204bb5635885e012f22eeb9d5db93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Activation volume</topic><topic>Alloying</topic><topic>Applied sciences</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Copper</topic><topic>COPPER ALLOYS (40 TO 99.3 CU)</topic><topic>Copper base alloys</topic><topic>Cu based alloys</topic><topic>DEFORMATION</topic><topic>Deformation and plasticity (including yield, ductility, and superplasticity)</topic><topic>Deformation behavior</topic><topic>Dislocations</topic><topic>Elasticity. Plasticity</topic><topic>Exact sciences and technology</topic><topic>Forming</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>MECHANICAL PROPERTIES</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Mechanical properties of solids</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>MICROSTRUCTURES</topic><topic>Physics</topic><topic>Production techniques</topic><topic>PROPERTIES</topic><topic>Rolling</topic><topic>Stacking fault energy</topic><topic>STACKING FAULTS</topic><topic>Transmission electron microscopy</topic><topic>Work hardening rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bahmanpour, H.</creatorcontrib><creatorcontrib>Kauffmann, A.</creatorcontrib><creatorcontrib>Khoshkhoo, M.S.</creatorcontrib><creatorcontrib>Youssef, K.M.</creatorcontrib><creatorcontrib>Mula, S.</creatorcontrib><creatorcontrib>Freudenberger, J.</creatorcontrib><creatorcontrib>Eckert, J.</creatorcontrib><creatorcontrib>Scattergood, R.O.</creatorcontrib><creatorcontrib>Koch, C.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bahmanpour, H.</au><au>Kauffmann, A.</au><au>Khoshkhoo, M.S.</au><au>Youssef, K.M.</au><au>Mula, S.</au><au>Freudenberger, J.</au><au>Eckert, J.</au><au>Scattergood, R.O.</au><au>Koch, C.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of stacking fault energy on deformation behavior of cryo-rolled copper and copper alloys</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2011-11-25</date><risdate>2011</risdate><volume>529</volume><spage>230</spage><epage>236</epage><pages>230-236</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>► Rolling of pure copper and Cu–12.1%Al–4.1%Zn at liquid nitrogen temperature. ► TEM observation shows that reduced stacking fault energy results in significant twinning activity. ► Investigating mechanical properties and deformation behavior via tensile and stress relaxation tests. ► Network dislocation strengthening model used to describe yield strength of cryo-rolled samples. Pure copper and Cu–12.1 at.%Al–4.1 at.%Zn alloy were subjected to rolling in liquid nitrogen. TEM studies showed that dynamic recovery during the deformation process was effectively suppressed and hence microstructures with dislocation substructure and deformation twins were formed. Mechanical properties were assessed via microtensile testing that shows improved yield strength, 520 ± 20 MPa, and ductility, 22%, in the case of pure copper. Alloying with Al and Zn results in reduction in stacking fault energy (SFE) which can contribute to enhanced strength and good ductility. Physical activation volume obtained via stress relaxation tests is 26 b 3, and 8 b 3 for pure copper, and Cu–12.1 at.%Al–4.1 at.%Zn, respectively. The effect of SFE on work hardening rate of samples is discussed. Although twinning is observed in the alloy, it is concluded that network dislocation strengthening plays the major role in determining the mechanical properties.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2011.09.022</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2011-11, Vol.529, p.230-236
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_1671335917
source Access via ScienceDirect (Elsevier)
subjects Activation volume
Alloying
Applied sciences
Condensed matter: structure, mechanical and thermal properties
Copper
COPPER ALLOYS (40 TO 99.3 CU)
Copper base alloys
Cu based alloys
DEFORMATION
Deformation and plasticity (including yield, ductility, and superplasticity)
Deformation behavior
Dislocations
Elasticity. Plasticity
Exact sciences and technology
Forming
Mechanical and acoustical properties of condensed matter
MECHANICAL PROPERTIES
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Mechanical properties of solids
Metals. Metallurgy
Microstructure
MICROSTRUCTURES
Physics
Production techniques
PROPERTIES
Rolling
Stacking fault energy
STACKING FAULTS
Transmission electron microscopy
Work hardening rate
title Effect of stacking fault energy on deformation behavior of cryo-rolled copper and copper alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A49%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20stacking%20fault%20energy%20on%20deformation%20behavior%20of%20cryo-rolled%20copper%20and%20copper%20alloys&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Bahmanpour,%20H.&rft.date=2011-11-25&rft.volume=529&rft.spage=230&rft.epage=236&rft.pages=230-236&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2011.09.022&rft_dat=%3Cproquest_cross%3E1671335917%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671335917&rft_id=info:pmid/&rft_els_id=S0921509311009828&rfr_iscdi=true