Resolution of the Scanning Helium Microscope

The resolution of helium ion scanning microscopes working in the secondary electron emission mode is theoretically estimated in the energy interval of E = 0.3-100 keV. The corresponding probe diameter improves with energy from 1.0 to 0.2 nm. A theoretical probe diameter of 0.25 nm can be obtained by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The open applied physics journal 2008-09, Vol.1 (1), p.4-10
Hauptverfasser: Kalbitzer, S., Zhukov, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 1
container_start_page 4
container_title The open applied physics journal
container_volume 1
creator Kalbitzer, S.
Zhukov, V.
description The resolution of helium ion scanning microscopes working in the secondary electron emission mode is theoretically estimated in the energy interval of E = 0.3-100 keV. The corresponding probe diameter improves with energy from 1.0 to 0.2 nm. A theoretical probe diameter of 0.25 nm can be obtained by use of a standard three-electrode objective lens of electrostatic microscopes. The most important ion-optical element of this device is the supertip ion source. The existing devices, however, need calibration of spatial resolution. Three elementary types of test objects are suggested: multilayer nano-structures of metal on insulator, metal-phthalocyanine crystals, and 'noise-like' objects such as metal nano-particles on dielectric substrates. At low beam energies, a new type of contrast can be obtained in the mode of secondary electron registration with a resolution of about 1.1 nm.
doi_str_mv 10.2174/1874183500801010004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671335557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671335557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1724-fab2b10bc42577e87624037cc68f4aa96d7e9531a976ba24bd065267f160bef93</originalsourceid><addsrcrecordid>eNptUEtLxDAYDKLguvoLvPTower35dkeZVFXWBF8nEOSTTTSbWrTHvz3tqwHDzKHGYZhGIaQc4QriopfY6U4VkwAVIATAPgBWcxuOduHf_QxOcn5E0AKqPmCXD77nJpxiKktUiiGD1-8ONO2sX0v1r6J4654jK5P2aXOn5KjYJrsz355Sd7ubl9X63LzdP-wutmUDhXlZTCWWgTrOBVK-UpJyoEp52QVuDG13CpfC4amVtIayu12WkOlCijB-lCzJbnY93Z9-hp9HvQuZuebxrQ-jVmjVMiYEEJNUbaPzhtz74Pu-rgz_bdG0PM3-p9v2A9oGlSa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671335557</pqid></control><display><type>article</type><title>Resolution of the Scanning Helium Microscope</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kalbitzer, S. ; Zhukov, V.</creator><creatorcontrib>Kalbitzer, S. ; Zhukov, V.</creatorcontrib><description>The resolution of helium ion scanning microscopes working in the secondary electron emission mode is theoretically estimated in the energy interval of E = 0.3-100 keV. The corresponding probe diameter improves with energy from 1.0 to 0.2 nm. A theoretical probe diameter of 0.25 nm can be obtained by use of a standard three-electrode objective lens of electrostatic microscopes. The most important ion-optical element of this device is the supertip ion source. The existing devices, however, need calibration of spatial resolution. Three elementary types of test objects are suggested: multilayer nano-structures of metal on insulator, metal-phthalocyanine crystals, and 'noise-like' objects such as metal nano-particles on dielectric substrates. At low beam energies, a new type of contrast can be obtained in the mode of secondary electron registration with a resolution of about 1.1 nm.</description><identifier>ISSN: 1874-1835</identifier><identifier>EISSN: 1874-1835</identifier><identifier>DOI: 10.2174/1874183500801010004</identifier><language>eng</language><subject>Beams (radiation) ; Devices ; Helium ; Microscopes ; Nanocomposites ; Nanomaterials ; Nanostructure ; Scanning electron microscopy</subject><ispartof>The open applied physics journal, 2008-09, Vol.1 (1), p.4-10</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1724-fab2b10bc42577e87624037cc68f4aa96d7e9531a976ba24bd065267f160bef93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kalbitzer, S.</creatorcontrib><creatorcontrib>Zhukov, V.</creatorcontrib><title>Resolution of the Scanning Helium Microscope</title><title>The open applied physics journal</title><description>The resolution of helium ion scanning microscopes working in the secondary electron emission mode is theoretically estimated in the energy interval of E = 0.3-100 keV. The corresponding probe diameter improves with energy from 1.0 to 0.2 nm. A theoretical probe diameter of 0.25 nm can be obtained by use of a standard three-electrode objective lens of electrostatic microscopes. The most important ion-optical element of this device is the supertip ion source. The existing devices, however, need calibration of spatial resolution. Three elementary types of test objects are suggested: multilayer nano-structures of metal on insulator, metal-phthalocyanine crystals, and 'noise-like' objects such as metal nano-particles on dielectric substrates. At low beam energies, a new type of contrast can be obtained in the mode of secondary electron registration with a resolution of about 1.1 nm.</description><subject>Beams (radiation)</subject><subject>Devices</subject><subject>Helium</subject><subject>Microscopes</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Scanning electron microscopy</subject><issn>1874-1835</issn><issn>1874-1835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNptUEtLxDAYDKLguvoLvPTower35dkeZVFXWBF8nEOSTTTSbWrTHvz3tqwHDzKHGYZhGIaQc4QriopfY6U4VkwAVIATAPgBWcxuOduHf_QxOcn5E0AKqPmCXD77nJpxiKktUiiGD1-8ONO2sX0v1r6J4654jK5P2aXOn5KjYJrsz355Sd7ubl9X63LzdP-wutmUDhXlZTCWWgTrOBVK-UpJyoEp52QVuDG13CpfC4amVtIayu12WkOlCijB-lCzJbnY93Z9-hp9HvQuZuebxrQ-jVmjVMiYEEJNUbaPzhtz74Pu-rgz_bdG0PM3-p9v2A9oGlSa</recordid><startdate>20080926</startdate><enddate>20080926</enddate><creator>Kalbitzer, S.</creator><creator>Zhukov, V.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20080926</creationdate><title>Resolution of the Scanning Helium Microscope</title><author>Kalbitzer, S. ; Zhukov, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1724-fab2b10bc42577e87624037cc68f4aa96d7e9531a976ba24bd065267f160bef93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Beams (radiation)</topic><topic>Devices</topic><topic>Helium</topic><topic>Microscopes</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Scanning electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalbitzer, S.</creatorcontrib><creatorcontrib>Zhukov, V.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The open applied physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalbitzer, S.</au><au>Zhukov, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolution of the Scanning Helium Microscope</atitle><jtitle>The open applied physics journal</jtitle><date>2008-09-26</date><risdate>2008</risdate><volume>1</volume><issue>1</issue><spage>4</spage><epage>10</epage><pages>4-10</pages><issn>1874-1835</issn><eissn>1874-1835</eissn><abstract>The resolution of helium ion scanning microscopes working in the secondary electron emission mode is theoretically estimated in the energy interval of E = 0.3-100 keV. The corresponding probe diameter improves with energy from 1.0 to 0.2 nm. A theoretical probe diameter of 0.25 nm can be obtained by use of a standard three-electrode objective lens of electrostatic microscopes. The most important ion-optical element of this device is the supertip ion source. The existing devices, however, need calibration of spatial resolution. Three elementary types of test objects are suggested: multilayer nano-structures of metal on insulator, metal-phthalocyanine crystals, and 'noise-like' objects such as metal nano-particles on dielectric substrates. At low beam energies, a new type of contrast can be obtained in the mode of secondary electron registration with a resolution of about 1.1 nm.</abstract><doi>10.2174/1874183500801010004</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1874-1835
ispartof The open applied physics journal, 2008-09, Vol.1 (1), p.4-10
issn 1874-1835
1874-1835
language eng
recordid cdi_proquest_miscellaneous_1671335557
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Beams (radiation)
Devices
Helium
Microscopes
Nanocomposites
Nanomaterials
Nanostructure
Scanning electron microscopy
title Resolution of the Scanning Helium Microscope
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A51%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolution%20of%20the%20Scanning%20Helium%20Microscope&rft.jtitle=The%20open%20applied%20physics%20journal&rft.au=Kalbitzer,%20S.&rft.date=2008-09-26&rft.volume=1&rft.issue=1&rft.spage=4&rft.epage=10&rft.pages=4-10&rft.issn=1874-1835&rft.eissn=1874-1835&rft_id=info:doi/10.2174/1874183500801010004&rft_dat=%3Cproquest_cross%3E1671335557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671335557&rft_id=info:pmid/&rfr_iscdi=true