A-posteriori error estimation for second order mechanical systems

One important issue for the simulation of flexible multibody systems is the reduction of the flexible bodies de- grees of freedom. As far as safety questions are concerned knowledge about the error introduced by the reduction of the flexible degrees of freedom is helpful and very important. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica Sinica 2012-06, Vol.28 (3), p.854-862
Hauptverfasser: Ruiner, Thomas, Fehr, Jörg, Haasdonk, Bernard, Eberhard, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 862
container_issue 3
container_start_page 854
container_title Acta mechanica Sinica
container_volume 28
creator Ruiner, Thomas
Fehr, Jörg
Haasdonk, Bernard
Eberhard, Peter
description One important issue for the simulation of flexible multibody systems is the reduction of the flexible bodies de- grees of freedom. As far as safety questions are concerned knowledge about the error introduced by the reduction of the flexible degrees of freedom is helpful and very important. In this work, an a-posteriori error estimator for linear first order systems is extended for error estimation of me- chanical second order systems. Due to the special second order structure of mechanical systems, an improvement of the a-posteriori error estimator is achieved. A major advan- tage of the a-posteriori error estimator is that the estimator is independent of the used reduction technique. Therefore, it can be used for moment-matching based, Gramian matrices based or modal based model reduction techniques. The capability of the proposed technique is demon- strated by the a-posteriori error estimation of a mechanical system, and a sensitivity analysis of the parameters involved in the error estimation process is conducted.
doi_str_mv 10.1007/s10409-012-0114-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671335396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>42767996</cqvip_id><sourcerecordid>1671335396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-7ca67efe9e18ed0ba9358a010396ddfea4014d19e2eb2c16c29d146c87594a13</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9jCxmLwxY4dj1XFl1SJpbvlOpc2VWK3djr032OUipHhdHfS-9zHS8gjsBdgTL0mYIJpyqDMAYKqKzIDmQsOIK_JjFVSUaWgviV3Ke0Z4xIUzMhiQQ8hjRi7ELsCYwyxwDR2gx274Is2twld8E0RYoOxGNDtrO-c7Yt0ztyQ7slNa_uED5c8J-v3t_Xyk66-P76WixV1XKiRKmelwhY1Qo0N21jNq9oyYFzLpmnRCgaiAY0lbkoH0pW6ASFdrSotLPA5eZ7GHmI4nvKJZuiSw763HsMpGZAKOK_ytCyFSepiSCliaw4xPxTPBpj5dctMbpnslvl1y6jMlBOTstZvMZp9OEWfH_oXeros2gW_PWbub5MolVQ6H_MDEeh4UQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671335396</pqid></control><display><type>article</type><title>A-posteriori error estimation for second order mechanical systems</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Ruiner, Thomas ; Fehr, Jörg ; Haasdonk, Bernard ; Eberhard, Peter</creator><creatorcontrib>Ruiner, Thomas ; Fehr, Jörg ; Haasdonk, Bernard ; Eberhard, Peter</creatorcontrib><description>One important issue for the simulation of flexible multibody systems is the reduction of the flexible bodies de- grees of freedom. As far as safety questions are concerned knowledge about the error introduced by the reduction of the flexible degrees of freedom is helpful and very important. In this work, an a-posteriori error estimator for linear first order systems is extended for error estimation of me- chanical second order systems. Due to the special second order structure of mechanical systems, an improvement of the a-posteriori error estimator is achieved. A major advan- tage of the a-posteriori error estimator is that the estimator is independent of the used reduction technique. Therefore, it can be used for moment-matching based, Gramian matrices based or modal based model reduction techniques. The capability of the proposed technique is demon- strated by the a-posteriori error estimation of a mechanical system, and a sensitivity analysis of the parameters involved in the error estimation process is conducted.</description><identifier>ISSN: 0567-7718</identifier><identifier>EISSN: 1614-3116</identifier><identifier>DOI: 10.1007/s10409-012-0114-7</identifier><language>eng</language><publisher>Heidelberg: The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences</publisher><subject>Classical and Continuum Physics ; Computational Intelligence ; Degrees of freedom ; Engineering ; Engineering Fluid Dynamics ; Error analysis ; Error detection ; Errors ; Estimators ; Mathematical analysis ; Mechanical systems ; Reduction ; Research Paper ; Theoretical and Applied Mechanics ; 二阶系统 ; 后验误差估计 ; 安全问题 ; 敏感性分析 ; 机械系统 ; 柔性多体系统 ; 模型降阶 ; 线性系统</subject><ispartof>Acta mechanica Sinica, 2012-06, Vol.28 (3), p.854-862</ispartof><rights>The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-7ca67efe9e18ed0ba9358a010396ddfea4014d19e2eb2c16c29d146c87594a13</citedby><cites>FETCH-LOGICAL-c347t-7ca67efe9e18ed0ba9358a010396ddfea4014d19e2eb2c16c29d146c87594a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86601X/86601X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10409-012-0114-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10409-012-0114-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Ruiner, Thomas</creatorcontrib><creatorcontrib>Fehr, Jörg</creatorcontrib><creatorcontrib>Haasdonk, Bernard</creatorcontrib><creatorcontrib>Eberhard, Peter</creatorcontrib><title>A-posteriori error estimation for second order mechanical systems</title><title>Acta mechanica Sinica</title><addtitle>Acta Mech Sin</addtitle><addtitle>Acta Mechanica Sinica</addtitle><description>One important issue for the simulation of flexible multibody systems is the reduction of the flexible bodies de- grees of freedom. As far as safety questions are concerned knowledge about the error introduced by the reduction of the flexible degrees of freedom is helpful and very important. In this work, an a-posteriori error estimator for linear first order systems is extended for error estimation of me- chanical second order systems. Due to the special second order structure of mechanical systems, an improvement of the a-posteriori error estimator is achieved. A major advan- tage of the a-posteriori error estimator is that the estimator is independent of the used reduction technique. Therefore, it can be used for moment-matching based, Gramian matrices based or modal based model reduction techniques. The capability of the proposed technique is demon- strated by the a-posteriori error estimation of a mechanical system, and a sensitivity analysis of the parameters involved in the error estimation process is conducted.</description><subject>Classical and Continuum Physics</subject><subject>Computational Intelligence</subject><subject>Degrees of freedom</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Error analysis</subject><subject>Error detection</subject><subject>Errors</subject><subject>Estimators</subject><subject>Mathematical analysis</subject><subject>Mechanical systems</subject><subject>Reduction</subject><subject>Research Paper</subject><subject>Theoretical and Applied Mechanics</subject><subject>二阶系统</subject><subject>后验误差估计</subject><subject>安全问题</subject><subject>敏感性分析</subject><subject>机械系统</subject><subject>柔性多体系统</subject><subject>模型降阶</subject><subject>线性系统</subject><issn>0567-7718</issn><issn>1614-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9jCxmLwxY4dj1XFl1SJpbvlOpc2VWK3djr032OUipHhdHfS-9zHS8gjsBdgTL0mYIJpyqDMAYKqKzIDmQsOIK_JjFVSUaWgviV3Ke0Z4xIUzMhiQQ8hjRi7ELsCYwyxwDR2gx274Is2twld8E0RYoOxGNDtrO-c7Yt0ztyQ7slNa_uED5c8J-v3t_Xyk66-P76WixV1XKiRKmelwhY1Qo0N21jNq9oyYFzLpmnRCgaiAY0lbkoH0pW6ASFdrSotLPA5eZ7GHmI4nvKJZuiSw763HsMpGZAKOK_ytCyFSepiSCliaw4xPxTPBpj5dctMbpnslvl1y6jMlBOTstZvMZp9OEWfH_oXeros2gW_PWbub5MolVQ6H_MDEeh4UQ</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Ruiner, Thomas</creator><creator>Fehr, Jörg</creator><creator>Haasdonk, Bernard</creator><creator>Eberhard, Peter</creator><general>The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20120601</creationdate><title>A-posteriori error estimation for second order mechanical systems</title><author>Ruiner, Thomas ; Fehr, Jörg ; Haasdonk, Bernard ; Eberhard, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-7ca67efe9e18ed0ba9358a010396ddfea4014d19e2eb2c16c29d146c87594a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Classical and Continuum Physics</topic><topic>Computational Intelligence</topic><topic>Degrees of freedom</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Error analysis</topic><topic>Error detection</topic><topic>Errors</topic><topic>Estimators</topic><topic>Mathematical analysis</topic><topic>Mechanical systems</topic><topic>Reduction</topic><topic>Research Paper</topic><topic>Theoretical and Applied Mechanics</topic><topic>二阶系统</topic><topic>后验误差估计</topic><topic>安全问题</topic><topic>敏感性分析</topic><topic>机械系统</topic><topic>柔性多体系统</topic><topic>模型降阶</topic><topic>线性系统</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruiner, Thomas</creatorcontrib><creatorcontrib>Fehr, Jörg</creatorcontrib><creatorcontrib>Haasdonk, Bernard</creatorcontrib><creatorcontrib>Eberhard, Peter</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Acta mechanica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruiner, Thomas</au><au>Fehr, Jörg</au><au>Haasdonk, Bernard</au><au>Eberhard, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A-posteriori error estimation for second order mechanical systems</atitle><jtitle>Acta mechanica Sinica</jtitle><stitle>Acta Mech Sin</stitle><addtitle>Acta Mechanica Sinica</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>28</volume><issue>3</issue><spage>854</spage><epage>862</epage><pages>854-862</pages><issn>0567-7718</issn><eissn>1614-3116</eissn><abstract>One important issue for the simulation of flexible multibody systems is the reduction of the flexible bodies de- grees of freedom. As far as safety questions are concerned knowledge about the error introduced by the reduction of the flexible degrees of freedom is helpful and very important. In this work, an a-posteriori error estimator for linear first order systems is extended for error estimation of me- chanical second order systems. Due to the special second order structure of mechanical systems, an improvement of the a-posteriori error estimator is achieved. A major advan- tage of the a-posteriori error estimator is that the estimator is independent of the used reduction technique. Therefore, it can be used for moment-matching based, Gramian matrices based or modal based model reduction techniques. The capability of the proposed technique is demon- strated by the a-posteriori error estimation of a mechanical system, and a sensitivity analysis of the parameters involved in the error estimation process is conducted.</abstract><cop>Heidelberg</cop><pub>The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences</pub><doi>10.1007/s10409-012-0114-7</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0567-7718
ispartof Acta mechanica Sinica, 2012-06, Vol.28 (3), p.854-862
issn 0567-7718
1614-3116
language eng
recordid cdi_proquest_miscellaneous_1671335396
source SpringerLink Journals; Alma/SFX Local Collection
subjects Classical and Continuum Physics
Computational Intelligence
Degrees of freedom
Engineering
Engineering Fluid Dynamics
Error analysis
Error detection
Errors
Estimators
Mathematical analysis
Mechanical systems
Reduction
Research Paper
Theoretical and Applied Mechanics
二阶系统
后验误差估计
安全问题
敏感性分析
机械系统
柔性多体系统
模型降阶
线性系统
title A-posteriori error estimation for second order mechanical systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A03%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A-posteriori%20error%20estimation%20for%20second%20order%20mechanical%20systems&rft.jtitle=Acta%20mechanica%20Sinica&rft.au=Ruiner,%20Thomas&rft.date=2012-06-01&rft.volume=28&rft.issue=3&rft.spage=854&rft.epage=862&rft.pages=854-862&rft.issn=0567-7718&rft.eissn=1614-3116&rft_id=info:doi/10.1007/s10409-012-0114-7&rft_dat=%3Cproquest_cross%3E1671335396%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671335396&rft_id=info:pmid/&rft_cqvip_id=42767996&rfr_iscdi=true