Regular connected bipancyclic spanning subgraphs of hypercubes

An n -dimensional hypercube Q n is a Hamiltonian graph; in other words Q n ( n ≥ 2 ) contains a spanning subgraph which is 2-regular and 2-connected. In this paper, we explore yet another strong property of hypercubes. We prove that for any integer k with 3 ≤ k ≤ n , Q n ( n ≥ 3 ) contains a spannin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2011-11, Vol.62 (9), p.3551-3554
Hauptverfasser: Mane, S.A., Waphare, B.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An n -dimensional hypercube Q n is a Hamiltonian graph; in other words Q n ( n ≥ 2 ) contains a spanning subgraph which is 2-regular and 2-connected. In this paper, we explore yet another strong property of hypercubes. We prove that for any integer k with 3 ≤ k ≤ n , Q n ( n ≥ 3 ) contains a spanning subgraph which is k -regular, k -connected and bipancyclic. We also obtain the result that every mesh P m × P n ( m , n ≥ 2 ) is bipancyclic, which is used to prove the property above.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2011.08.071