Regular connected bipancyclic spanning subgraphs of hypercubes
An n -dimensional hypercube Q n is a Hamiltonian graph; in other words Q n ( n ≥ 2 ) contains a spanning subgraph which is 2-regular and 2-connected. In this paper, we explore yet another strong property of hypercubes. We prove that for any integer k with 3 ≤ k ≤ n , Q n ( n ≥ 3 ) contains a spannin...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2011-11, Vol.62 (9), p.3551-3554 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An
n
-dimensional hypercube
Q
n
is a Hamiltonian graph; in other words
Q
n
(
n
≥
2
) contains a spanning subgraph which is 2-regular and 2-connected. In this paper, we explore yet another strong property of hypercubes. We prove that for any integer
k
with
3
≤
k
≤
n
,
Q
n
(
n
≥
3
) contains a spanning subgraph which is
k
-regular,
k
-connected and bipancyclic. We also obtain the result that every mesh
P
m
×
P
n
(
m
,
n
≥
2
) is bipancyclic, which is used to prove the property above. |
---|---|
ISSN: | 0898-1221 1873-7668 |
DOI: | 10.1016/j.camwa.2011.08.071 |