Enlargement of absolute photonic band gap in modified 2D anisotropic annular photonic crystals
We analyze the absolute photonic band gap in two dimensional (2D) square, triangular and honeycomb lattices composed of air holes or rings with different geometrical shapes and orientations in anisotropic tellurium background. Using the numerical plane wave expansion method, we engineer the absolute...
Gespeichert in:
Veröffentlicht in: | Optics communications 2011-06, Vol.284 (13), p.3315-3322 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3322 |
---|---|
container_issue | 13 |
container_start_page | 3315 |
container_title | Optics communications |
container_volume | 284 |
creator | Khalkhali, T. Fathollahi Rezaei, B. Kalafi, M. |
description | We analyze the absolute photonic band gap in two dimensional (2D) square, triangular and honeycomb lattices composed of air holes or rings with different geometrical shapes and orientations in anisotropic tellurium background. Using the numerical plane wave expansion method, we engineer the absolute photonic band gap in modified lattices, achieved by addition of circular, elliptical, rectangular, square and hexagonal air hole or ring into the center of each lattice unit cell. We discuss the maximization of absolute photonic band gap width as a function of main and additional air hole or ring parameters with different shapes and orientation.
► We consider a certain class of 2D photonic crystals, named modified structures. ► We combine several design techniques for maximizing the photonic band gap. ► We employ the plane-wave method for band structure calculations. ► The results show a remarkable increment in the width of photonic band gap. |
doi_str_mv | 10.1016/j.optcom.2011.03.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671334508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S003040181100277X</els_id><sourcerecordid>1671334508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-c9d14293aa502d4d6c88814570132ca39c4b11fd3de0ea7096a47a1c263837c73</originalsourceid><addsrcrecordid>eNp9kM1KAzEYRYMoWKtv4CJLNzN-3yTztxGk1h8ouNGtIU0yNWUmGZNU6Ns7pYI7V3dz74F7CLlGyBGwut3mfkzKD3kBiDmwHKA6ITNsapYBQzglMwAGGQdszslFjFsAQM6aGflYul6GjRmMS9R3VK6j73fJ0PHTJ--somvpNN3IkVpHB69tZ42mxQOVzkafgh-njnRuN2H-RirsY5J9vCRn3RTm6jfn5P1x-bZ4zlavTy-L-1WmOJQpU61GXrRMyhIKzXWlmqZBXtaArFCStYqvETvNtAEja2gryWuJqqhYw2pVszm5OXLH4L92JiYx2KhM30tn_C4KrGpkjJfQTFV-rKrgYwymE2Owgwx7gSAOOsVWHHWKg04BTEw6p9ndcWamG9_WBBGVNU4ZbYNRSWhv_wf8AF-IgH8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671334508</pqid></control><display><type>article</type><title>Enlargement of absolute photonic band gap in modified 2D anisotropic annular photonic crystals</title><source>Elsevier ScienceDirect Journals</source><creator>Khalkhali, T. Fathollahi ; Rezaei, B. ; Kalafi, M.</creator><creatorcontrib>Khalkhali, T. Fathollahi ; Rezaei, B. ; Kalafi, M.</creatorcontrib><description>We analyze the absolute photonic band gap in two dimensional (2D) square, triangular and honeycomb lattices composed of air holes or rings with different geometrical shapes and orientations in anisotropic tellurium background. Using the numerical plane wave expansion method, we engineer the absolute photonic band gap in modified lattices, achieved by addition of circular, elliptical, rectangular, square and hexagonal air hole or ring into the center of each lattice unit cell. We discuss the maximization of absolute photonic band gap width as a function of main and additional air hole or ring parameters with different shapes and orientation.
► We consider a certain class of 2D photonic crystals, named modified structures. ► We combine several design techniques for maximizing the photonic band gap. ► We employ the plane-wave method for band structure calculations. ► The results show a remarkable increment in the width of photonic band gap.</description><identifier>ISSN: 0030-4018</identifier><identifier>EISSN: 1873-0310</identifier><identifier>DOI: 10.1016/j.optcom.2011.03.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Absolute photonic band gap ; Anisotropic tellurium ; Anisotropy ; Lattices ; Mathematical models ; Maximization ; Orientation ; Photonic crystal ; Photonics ; Plane waves ; Two dimensional</subject><ispartof>Optics communications, 2011-06, Vol.284 (13), p.3315-3322</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-c9d14293aa502d4d6c88814570132ca39c4b11fd3de0ea7096a47a1c263837c73</citedby><cites>FETCH-LOGICAL-c405t-c9d14293aa502d4d6c88814570132ca39c4b11fd3de0ea7096a47a1c263837c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S003040181100277X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Khalkhali, T. Fathollahi</creatorcontrib><creatorcontrib>Rezaei, B.</creatorcontrib><creatorcontrib>Kalafi, M.</creatorcontrib><title>Enlargement of absolute photonic band gap in modified 2D anisotropic annular photonic crystals</title><title>Optics communications</title><description>We analyze the absolute photonic band gap in two dimensional (2D) square, triangular and honeycomb lattices composed of air holes or rings with different geometrical shapes and orientations in anisotropic tellurium background. Using the numerical plane wave expansion method, we engineer the absolute photonic band gap in modified lattices, achieved by addition of circular, elliptical, rectangular, square and hexagonal air hole or ring into the center of each lattice unit cell. We discuss the maximization of absolute photonic band gap width as a function of main and additional air hole or ring parameters with different shapes and orientation.
► We consider a certain class of 2D photonic crystals, named modified structures. ► We combine several design techniques for maximizing the photonic band gap. ► We employ the plane-wave method for band structure calculations. ► The results show a remarkable increment in the width of photonic band gap.</description><subject>Absolute photonic band gap</subject><subject>Anisotropic tellurium</subject><subject>Anisotropy</subject><subject>Lattices</subject><subject>Mathematical models</subject><subject>Maximization</subject><subject>Orientation</subject><subject>Photonic crystal</subject><subject>Photonics</subject><subject>Plane waves</subject><subject>Two dimensional</subject><issn>0030-4018</issn><issn>1873-0310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEYRYMoWKtv4CJLNzN-3yTztxGk1h8ouNGtIU0yNWUmGZNU6Ns7pYI7V3dz74F7CLlGyBGwut3mfkzKD3kBiDmwHKA6ITNsapYBQzglMwAGGQdszslFjFsAQM6aGflYul6GjRmMS9R3VK6j73fJ0PHTJ--somvpNN3IkVpHB69tZ42mxQOVzkafgh-njnRuN2H-RirsY5J9vCRn3RTm6jfn5P1x-bZ4zlavTy-L-1WmOJQpU61GXrRMyhIKzXWlmqZBXtaArFCStYqvETvNtAEja2gryWuJqqhYw2pVszm5OXLH4L92JiYx2KhM30tn_C4KrGpkjJfQTFV-rKrgYwymE2Owgwx7gSAOOsVWHHWKg04BTEw6p9ndcWamG9_WBBGVNU4ZbYNRSWhv_wf8AF-IgH8</recordid><startdate>20110615</startdate><enddate>20110615</enddate><creator>Khalkhali, T. Fathollahi</creator><creator>Rezaei, B.</creator><creator>Kalafi, M.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20110615</creationdate><title>Enlargement of absolute photonic band gap in modified 2D anisotropic annular photonic crystals</title><author>Khalkhali, T. Fathollahi ; Rezaei, B. ; Kalafi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-c9d14293aa502d4d6c88814570132ca39c4b11fd3de0ea7096a47a1c263837c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Absolute photonic band gap</topic><topic>Anisotropic tellurium</topic><topic>Anisotropy</topic><topic>Lattices</topic><topic>Mathematical models</topic><topic>Maximization</topic><topic>Orientation</topic><topic>Photonic crystal</topic><topic>Photonics</topic><topic>Plane waves</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalkhali, T. Fathollahi</creatorcontrib><creatorcontrib>Rezaei, B.</creatorcontrib><creatorcontrib>Kalafi, M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khalkhali, T. Fathollahi</au><au>Rezaei, B.</au><au>Kalafi, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enlargement of absolute photonic band gap in modified 2D anisotropic annular photonic crystals</atitle><jtitle>Optics communications</jtitle><date>2011-06-15</date><risdate>2011</risdate><volume>284</volume><issue>13</issue><spage>3315</spage><epage>3322</epage><pages>3315-3322</pages><issn>0030-4018</issn><eissn>1873-0310</eissn><abstract>We analyze the absolute photonic band gap in two dimensional (2D) square, triangular and honeycomb lattices composed of air holes or rings with different geometrical shapes and orientations in anisotropic tellurium background. Using the numerical plane wave expansion method, we engineer the absolute photonic band gap in modified lattices, achieved by addition of circular, elliptical, rectangular, square and hexagonal air hole or ring into the center of each lattice unit cell. We discuss the maximization of absolute photonic band gap width as a function of main and additional air hole or ring parameters with different shapes and orientation.
► We consider a certain class of 2D photonic crystals, named modified structures. ► We combine several design techniques for maximizing the photonic band gap. ► We employ the plane-wave method for band structure calculations. ► The results show a remarkable increment in the width of photonic band gap.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.optcom.2011.03.006</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-4018 |
ispartof | Optics communications, 2011-06, Vol.284 (13), p.3315-3322 |
issn | 0030-4018 1873-0310 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671334508 |
source | Elsevier ScienceDirect Journals |
subjects | Absolute photonic band gap Anisotropic tellurium Anisotropy Lattices Mathematical models Maximization Orientation Photonic crystal Photonics Plane waves Two dimensional |
title | Enlargement of absolute photonic band gap in modified 2D anisotropic annular photonic crystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A49%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enlargement%20of%20absolute%20photonic%20band%20gap%20in%20modified%202D%20anisotropic%20annular%20photonic%20crystals&rft.jtitle=Optics%20communications&rft.au=Khalkhali,%20T.%20Fathollahi&rft.date=2011-06-15&rft.volume=284&rft.issue=13&rft.spage=3315&rft.epage=3322&rft.pages=3315-3322&rft.issn=0030-4018&rft.eissn=1873-0310&rft_id=info:doi/10.1016/j.optcom.2011.03.006&rft_dat=%3Cproquest_cross%3E1671334508%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671334508&rft_id=info:pmid/&rft_els_id=S003040181100277X&rfr_iscdi=true |