Enlargement of absolute photonic band gap in modified 2D anisotropic annular photonic crystals

We analyze the absolute photonic band gap in two dimensional (2D) square, triangular and honeycomb lattices composed of air holes or rings with different geometrical shapes and orientations in anisotropic tellurium background. Using the numerical plane wave expansion method, we engineer the absolute...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics communications 2011-06, Vol.284 (13), p.3315-3322
Hauptverfasser: Khalkhali, T. Fathollahi, Rezaei, B., Kalafi, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3322
container_issue 13
container_start_page 3315
container_title Optics communications
container_volume 284
creator Khalkhali, T. Fathollahi
Rezaei, B.
Kalafi, M.
description We analyze the absolute photonic band gap in two dimensional (2D) square, triangular and honeycomb lattices composed of air holes or rings with different geometrical shapes and orientations in anisotropic tellurium background. Using the numerical plane wave expansion method, we engineer the absolute photonic band gap in modified lattices, achieved by addition of circular, elliptical, rectangular, square and hexagonal air hole or ring into the center of each lattice unit cell. We discuss the maximization of absolute photonic band gap width as a function of main and additional air hole or ring parameters with different shapes and orientation. ► We consider a certain class of 2D photonic crystals, named modified structures. ► We combine several design techniques for maximizing the photonic band gap. ► We employ the plane-wave method for band structure calculations. ► The results show a remarkable increment in the width of photonic band gap.
doi_str_mv 10.1016/j.optcom.2011.03.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671334508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S003040181100277X</els_id><sourcerecordid>1671334508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-c9d14293aa502d4d6c88814570132ca39c4b11fd3de0ea7096a47a1c263837c73</originalsourceid><addsrcrecordid>eNp9kM1KAzEYRYMoWKtv4CJLNzN-3yTztxGk1h8ouNGtIU0yNWUmGZNU6Ns7pYI7V3dz74F7CLlGyBGwut3mfkzKD3kBiDmwHKA6ITNsapYBQzglMwAGGQdszslFjFsAQM6aGflYul6GjRmMS9R3VK6j73fJ0PHTJ--somvpNN3IkVpHB69tZ42mxQOVzkafgh-njnRuN2H-RirsY5J9vCRn3RTm6jfn5P1x-bZ4zlavTy-L-1WmOJQpU61GXrRMyhIKzXWlmqZBXtaArFCStYqvETvNtAEja2gryWuJqqhYw2pVszm5OXLH4L92JiYx2KhM30tn_C4KrGpkjJfQTFV-rKrgYwymE2Owgwx7gSAOOsVWHHWKg04BTEw6p9ndcWamG9_WBBGVNU4ZbYNRSWhv_wf8AF-IgH8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671334508</pqid></control><display><type>article</type><title>Enlargement of absolute photonic band gap in modified 2D anisotropic annular photonic crystals</title><source>Elsevier ScienceDirect Journals</source><creator>Khalkhali, T. Fathollahi ; Rezaei, B. ; Kalafi, M.</creator><creatorcontrib>Khalkhali, T. Fathollahi ; Rezaei, B. ; Kalafi, M.</creatorcontrib><description>We analyze the absolute photonic band gap in two dimensional (2D) square, triangular and honeycomb lattices composed of air holes or rings with different geometrical shapes and orientations in anisotropic tellurium background. Using the numerical plane wave expansion method, we engineer the absolute photonic band gap in modified lattices, achieved by addition of circular, elliptical, rectangular, square and hexagonal air hole or ring into the center of each lattice unit cell. We discuss the maximization of absolute photonic band gap width as a function of main and additional air hole or ring parameters with different shapes and orientation. ► We consider a certain class of 2D photonic crystals, named modified structures. ► We combine several design techniques for maximizing the photonic band gap. ► We employ the plane-wave method for band structure calculations. ► The results show a remarkable increment in the width of photonic band gap.</description><identifier>ISSN: 0030-4018</identifier><identifier>EISSN: 1873-0310</identifier><identifier>DOI: 10.1016/j.optcom.2011.03.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Absolute photonic band gap ; Anisotropic tellurium ; Anisotropy ; Lattices ; Mathematical models ; Maximization ; Orientation ; Photonic crystal ; Photonics ; Plane waves ; Two dimensional</subject><ispartof>Optics communications, 2011-06, Vol.284 (13), p.3315-3322</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-c9d14293aa502d4d6c88814570132ca39c4b11fd3de0ea7096a47a1c263837c73</citedby><cites>FETCH-LOGICAL-c405t-c9d14293aa502d4d6c88814570132ca39c4b11fd3de0ea7096a47a1c263837c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S003040181100277X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Khalkhali, T. Fathollahi</creatorcontrib><creatorcontrib>Rezaei, B.</creatorcontrib><creatorcontrib>Kalafi, M.</creatorcontrib><title>Enlargement of absolute photonic band gap in modified 2D anisotropic annular photonic crystals</title><title>Optics communications</title><description>We analyze the absolute photonic band gap in two dimensional (2D) square, triangular and honeycomb lattices composed of air holes or rings with different geometrical shapes and orientations in anisotropic tellurium background. Using the numerical plane wave expansion method, we engineer the absolute photonic band gap in modified lattices, achieved by addition of circular, elliptical, rectangular, square and hexagonal air hole or ring into the center of each lattice unit cell. We discuss the maximization of absolute photonic band gap width as a function of main and additional air hole or ring parameters with different shapes and orientation. ► We consider a certain class of 2D photonic crystals, named modified structures. ► We combine several design techniques for maximizing the photonic band gap. ► We employ the plane-wave method for band structure calculations. ► The results show a remarkable increment in the width of photonic band gap.</description><subject>Absolute photonic band gap</subject><subject>Anisotropic tellurium</subject><subject>Anisotropy</subject><subject>Lattices</subject><subject>Mathematical models</subject><subject>Maximization</subject><subject>Orientation</subject><subject>Photonic crystal</subject><subject>Photonics</subject><subject>Plane waves</subject><subject>Two dimensional</subject><issn>0030-4018</issn><issn>1873-0310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEYRYMoWKtv4CJLNzN-3yTztxGk1h8ouNGtIU0yNWUmGZNU6Ns7pYI7V3dz74F7CLlGyBGwut3mfkzKD3kBiDmwHKA6ITNsapYBQzglMwAGGQdszslFjFsAQM6aGflYul6GjRmMS9R3VK6j73fJ0PHTJ--somvpNN3IkVpHB69tZ42mxQOVzkafgh-njnRuN2H-RirsY5J9vCRn3RTm6jfn5P1x-bZ4zlavTy-L-1WmOJQpU61GXrRMyhIKzXWlmqZBXtaArFCStYqvETvNtAEja2gryWuJqqhYw2pVszm5OXLH4L92JiYx2KhM30tn_C4KrGpkjJfQTFV-rKrgYwymE2Owgwx7gSAOOsVWHHWKg04BTEw6p9ndcWamG9_WBBGVNU4ZbYNRSWhv_wf8AF-IgH8</recordid><startdate>20110615</startdate><enddate>20110615</enddate><creator>Khalkhali, T. Fathollahi</creator><creator>Rezaei, B.</creator><creator>Kalafi, M.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20110615</creationdate><title>Enlargement of absolute photonic band gap in modified 2D anisotropic annular photonic crystals</title><author>Khalkhali, T. Fathollahi ; Rezaei, B. ; Kalafi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-c9d14293aa502d4d6c88814570132ca39c4b11fd3de0ea7096a47a1c263837c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Absolute photonic band gap</topic><topic>Anisotropic tellurium</topic><topic>Anisotropy</topic><topic>Lattices</topic><topic>Mathematical models</topic><topic>Maximization</topic><topic>Orientation</topic><topic>Photonic crystal</topic><topic>Photonics</topic><topic>Plane waves</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalkhali, T. Fathollahi</creatorcontrib><creatorcontrib>Rezaei, B.</creatorcontrib><creatorcontrib>Kalafi, M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khalkhali, T. Fathollahi</au><au>Rezaei, B.</au><au>Kalafi, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enlargement of absolute photonic band gap in modified 2D anisotropic annular photonic crystals</atitle><jtitle>Optics communications</jtitle><date>2011-06-15</date><risdate>2011</risdate><volume>284</volume><issue>13</issue><spage>3315</spage><epage>3322</epage><pages>3315-3322</pages><issn>0030-4018</issn><eissn>1873-0310</eissn><abstract>We analyze the absolute photonic band gap in two dimensional (2D) square, triangular and honeycomb lattices composed of air holes or rings with different geometrical shapes and orientations in anisotropic tellurium background. Using the numerical plane wave expansion method, we engineer the absolute photonic band gap in modified lattices, achieved by addition of circular, elliptical, rectangular, square and hexagonal air hole or ring into the center of each lattice unit cell. We discuss the maximization of absolute photonic band gap width as a function of main and additional air hole or ring parameters with different shapes and orientation. ► We consider a certain class of 2D photonic crystals, named modified structures. ► We combine several design techniques for maximizing the photonic band gap. ► We employ the plane-wave method for band structure calculations. ► The results show a remarkable increment in the width of photonic band gap.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.optcom.2011.03.006</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0030-4018
ispartof Optics communications, 2011-06, Vol.284 (13), p.3315-3322
issn 0030-4018
1873-0310
language eng
recordid cdi_proquest_miscellaneous_1671334508
source Elsevier ScienceDirect Journals
subjects Absolute photonic band gap
Anisotropic tellurium
Anisotropy
Lattices
Mathematical models
Maximization
Orientation
Photonic crystal
Photonics
Plane waves
Two dimensional
title Enlargement of absolute photonic band gap in modified 2D anisotropic annular photonic crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A49%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enlargement%20of%20absolute%20photonic%20band%20gap%20in%20modified%202D%20anisotropic%20annular%20photonic%20crystals&rft.jtitle=Optics%20communications&rft.au=Khalkhali,%20T.%20Fathollahi&rft.date=2011-06-15&rft.volume=284&rft.issue=13&rft.spage=3315&rft.epage=3322&rft.pages=3315-3322&rft.issn=0030-4018&rft.eissn=1873-0310&rft_id=info:doi/10.1016/j.optcom.2011.03.006&rft_dat=%3Cproquest_cross%3E1671334508%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671334508&rft_id=info:pmid/&rft_els_id=S003040181100277X&rfr_iscdi=true