Quasistatic approximations for stiff second order differential equations

Stiff terms in second order ordinary differential equations may cause large computation time due to high frequency oscillations. Quasistatic approximations eliminate these high frequency solution components in the dynamical simulation of multibody systems by neglecting inertia forces. In the present...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied numerical mathematics 2012-10, Vol.62 (10), p.1579-1590
Hauptverfasser: Weber, Steffen, Arnold, Martin, Valášek, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1590
container_issue 10
container_start_page 1579
container_title Applied numerical mathematics
container_volume 62
creator Weber, Steffen
Arnold, Martin
Valášek, Michael
description Stiff terms in second order ordinary differential equations may cause large computation time due to high frequency oscillations. Quasistatic approximations eliminate these high frequency solution components in the dynamical simulation of multibody systems by neglecting inertia forces. In the present paper, we study the approximation error of this approach using classical results from singular perturbation theory. The transformation of the linearly implicit second order model equations from multibody dynamics to the canonical (semi-)explicit form of first order singularly perturbed ordinary differential equations is studied in detail. Numerical tests for the model of a walking mobile robot with stiff contact forces between legs and ground show that the computation time may be reduced by a factor up to 10 using the proposed quasistatic approximation.
doi_str_mv 10.1016/j.apnum.2012.06.030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671328487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168927412001195</els_id><sourcerecordid>1671328487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-e5a8048e08176b7a1123f3d7f0f4f67eb8911b132f90b6ba794d4e871396942a3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Ai89emmdNGmSHjzI4hcsiKDnkKYTyNJtu0kr-u_NWs-ewoTnHeZ9CLmmUFCg4nZXmLGf90UJtCxAFMDghKyokiyvuIBTskqUyutS8nNyEeMOAKqKw4o8v80m-jiZydvMjGMYvvw-DUMfMzeELE7euSyiHfo2G0KLIWvTDwbsJ2-6DA_zQl-SM2e6iFd_75p8PD68b57z7evTy-Z-m1vGxJRjZRRwhaCoFI00lJbMsVY6cNwJiY2qKW0oK10NjWiMrHnLUUnKalHz0rA1uVn2plMPM8ZJ73202HWmx2GOmorEloqn7mvCFtSGIcaATo8hlQvfmoI-etM7_etNH71pEDp5S6m7JYWpxafHoKP12FtsfUA76Xbw_-Z_AJAWd_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671328487</pqid></control><display><type>article</type><title>Quasistatic approximations for stiff second order differential equations</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Weber, Steffen ; Arnold, Martin ; Valášek, Michael</creator><creatorcontrib>Weber, Steffen ; Arnold, Martin ; Valášek, Michael</creatorcontrib><description>Stiff terms in second order ordinary differential equations may cause large computation time due to high frequency oscillations. Quasistatic approximations eliminate these high frequency solution components in the dynamical simulation of multibody systems by neglecting inertia forces. In the present paper, we study the approximation error of this approach using classical results from singular perturbation theory. The transformation of the linearly implicit second order model equations from multibody dynamics to the canonical (semi-)explicit form of first order singularly perturbed ordinary differential equations is studied in detail. Numerical tests for the model of a walking mobile robot with stiff contact forces between legs and ground show that the computation time may be reduced by a factor up to 10 using the proposed quasistatic approximation.</description><identifier>ISSN: 0168-9274</identifier><identifier>EISSN: 1873-5460</identifier><identifier>DOI: 10.1016/j.apnum.2012.06.030</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Approximation ; Computation ; Differential equations ; High frequencies ; Mass-lumping ; Mathematical models ; Multibody systems ; Quasistatic approximation ; Robots ; Stiff ODEs ; Walking</subject><ispartof>Applied numerical mathematics, 2012-10, Vol.62 (10), p.1579-1590</ispartof><rights>2012 IMACS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-e5a8048e08176b7a1123f3d7f0f4f67eb8911b132f90b6ba794d4e871396942a3</citedby><cites>FETCH-LOGICAL-c336t-e5a8048e08176b7a1123f3d7f0f4f67eb8911b132f90b6ba794d4e871396942a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168927412001195$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Weber, Steffen</creatorcontrib><creatorcontrib>Arnold, Martin</creatorcontrib><creatorcontrib>Valášek, Michael</creatorcontrib><title>Quasistatic approximations for stiff second order differential equations</title><title>Applied numerical mathematics</title><description>Stiff terms in second order ordinary differential equations may cause large computation time due to high frequency oscillations. Quasistatic approximations eliminate these high frequency solution components in the dynamical simulation of multibody systems by neglecting inertia forces. In the present paper, we study the approximation error of this approach using classical results from singular perturbation theory. The transformation of the linearly implicit second order model equations from multibody dynamics to the canonical (semi-)explicit form of first order singularly perturbed ordinary differential equations is studied in detail. Numerical tests for the model of a walking mobile robot with stiff contact forces between legs and ground show that the computation time may be reduced by a factor up to 10 using the proposed quasistatic approximation.</description><subject>Approximation</subject><subject>Computation</subject><subject>Differential equations</subject><subject>High frequencies</subject><subject>Mass-lumping</subject><subject>Mathematical models</subject><subject>Multibody systems</subject><subject>Quasistatic approximation</subject><subject>Robots</subject><subject>Stiff ODEs</subject><subject>Walking</subject><issn>0168-9274</issn><issn>1873-5460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Ai89emmdNGmSHjzI4hcsiKDnkKYTyNJtu0kr-u_NWs-ewoTnHeZ9CLmmUFCg4nZXmLGf90UJtCxAFMDghKyokiyvuIBTskqUyutS8nNyEeMOAKqKw4o8v80m-jiZydvMjGMYvvw-DUMfMzeELE7euSyiHfo2G0KLIWvTDwbsJ2-6DA_zQl-SM2e6iFd_75p8PD68b57z7evTy-Z-m1vGxJRjZRRwhaCoFI00lJbMsVY6cNwJiY2qKW0oK10NjWiMrHnLUUnKalHz0rA1uVn2plMPM8ZJ73202HWmx2GOmorEloqn7mvCFtSGIcaATo8hlQvfmoI-etM7_etNH71pEDp5S6m7JYWpxafHoKP12FtsfUA76Xbw_-Z_AJAWd_w</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Weber, Steffen</creator><creator>Arnold, Martin</creator><creator>Valášek, Michael</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201210</creationdate><title>Quasistatic approximations for stiff second order differential equations</title><author>Weber, Steffen ; Arnold, Martin ; Valášek, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-e5a8048e08176b7a1123f3d7f0f4f67eb8911b132f90b6ba794d4e871396942a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation</topic><topic>Computation</topic><topic>Differential equations</topic><topic>High frequencies</topic><topic>Mass-lumping</topic><topic>Mathematical models</topic><topic>Multibody systems</topic><topic>Quasistatic approximation</topic><topic>Robots</topic><topic>Stiff ODEs</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, Steffen</creatorcontrib><creatorcontrib>Arnold, Martin</creatorcontrib><creatorcontrib>Valášek, Michael</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied numerical mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, Steffen</au><au>Arnold, Martin</au><au>Valášek, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasistatic approximations for stiff second order differential equations</atitle><jtitle>Applied numerical mathematics</jtitle><date>2012-10</date><risdate>2012</risdate><volume>62</volume><issue>10</issue><spage>1579</spage><epage>1590</epage><pages>1579-1590</pages><issn>0168-9274</issn><eissn>1873-5460</eissn><abstract>Stiff terms in second order ordinary differential equations may cause large computation time due to high frequency oscillations. Quasistatic approximations eliminate these high frequency solution components in the dynamical simulation of multibody systems by neglecting inertia forces. In the present paper, we study the approximation error of this approach using classical results from singular perturbation theory. The transformation of the linearly implicit second order model equations from multibody dynamics to the canonical (semi-)explicit form of first order singularly perturbed ordinary differential equations is studied in detail. Numerical tests for the model of a walking mobile robot with stiff contact forces between legs and ground show that the computation time may be reduced by a factor up to 10 using the proposed quasistatic approximation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apnum.2012.06.030</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-9274
ispartof Applied numerical mathematics, 2012-10, Vol.62 (10), p.1579-1590
issn 0168-9274
1873-5460
language eng
recordid cdi_proquest_miscellaneous_1671328487
source ScienceDirect Journals (5 years ago - present)
subjects Approximation
Computation
Differential equations
High frequencies
Mass-lumping
Mathematical models
Multibody systems
Quasistatic approximation
Robots
Stiff ODEs
Walking
title Quasistatic approximations for stiff second order differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasistatic%20approximations%20for%20stiff%20second%20order%20differential%20equations&rft.jtitle=Applied%20numerical%20mathematics&rft.au=Weber,%20Steffen&rft.date=2012-10&rft.volume=62&rft.issue=10&rft.spage=1579&rft.epage=1590&rft.pages=1579-1590&rft.issn=0168-9274&rft.eissn=1873-5460&rft_id=info:doi/10.1016/j.apnum.2012.06.030&rft_dat=%3Cproquest_cross%3E1671328487%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671328487&rft_id=info:pmid/&rft_els_id=S0168927412001195&rfr_iscdi=true