Quasistatic approximations for stiff second order differential equations
Stiff terms in second order ordinary differential equations may cause large computation time due to high frequency oscillations. Quasistatic approximations eliminate these high frequency solution components in the dynamical simulation of multibody systems by neglecting inertia forces. In the present...
Gespeichert in:
Veröffentlicht in: | Applied numerical mathematics 2012-10, Vol.62 (10), p.1579-1590 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1590 |
---|---|
container_issue | 10 |
container_start_page | 1579 |
container_title | Applied numerical mathematics |
container_volume | 62 |
creator | Weber, Steffen Arnold, Martin Valášek, Michael |
description | Stiff terms in second order ordinary differential equations may cause large computation time due to high frequency oscillations. Quasistatic approximations eliminate these high frequency solution components in the dynamical simulation of multibody systems by neglecting inertia forces. In the present paper, we study the approximation error of this approach using classical results from singular perturbation theory. The transformation of the linearly implicit second order model equations from multibody dynamics to the canonical (semi-)explicit form of first order singularly perturbed ordinary differential equations is studied in detail. Numerical tests for the model of a walking mobile robot with stiff contact forces between legs and ground show that the computation time may be reduced by a factor up to 10 using the proposed quasistatic approximation. |
doi_str_mv | 10.1016/j.apnum.2012.06.030 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671328487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168927412001195</els_id><sourcerecordid>1671328487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-e5a8048e08176b7a1123f3d7f0f4f67eb8911b132f90b6ba794d4e871396942a3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Ai89emmdNGmSHjzI4hcsiKDnkKYTyNJtu0kr-u_NWs-ewoTnHeZ9CLmmUFCg4nZXmLGf90UJtCxAFMDghKyokiyvuIBTskqUyutS8nNyEeMOAKqKw4o8v80m-jiZydvMjGMYvvw-DUMfMzeELE7euSyiHfo2G0KLIWvTDwbsJ2-6DA_zQl-SM2e6iFd_75p8PD68b57z7evTy-Z-m1vGxJRjZRRwhaCoFI00lJbMsVY6cNwJiY2qKW0oK10NjWiMrHnLUUnKalHz0rA1uVn2plMPM8ZJ73202HWmx2GOmorEloqn7mvCFtSGIcaATo8hlQvfmoI-etM7_etNH71pEDp5S6m7JYWpxafHoKP12FtsfUA76Xbw_-Z_AJAWd_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671328487</pqid></control><display><type>article</type><title>Quasistatic approximations for stiff second order differential equations</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Weber, Steffen ; Arnold, Martin ; Valášek, Michael</creator><creatorcontrib>Weber, Steffen ; Arnold, Martin ; Valášek, Michael</creatorcontrib><description>Stiff terms in second order ordinary differential equations may cause large computation time due to high frequency oscillations. Quasistatic approximations eliminate these high frequency solution components in the dynamical simulation of multibody systems by neglecting inertia forces. In the present paper, we study the approximation error of this approach using classical results from singular perturbation theory. The transformation of the linearly implicit second order model equations from multibody dynamics to the canonical (semi-)explicit form of first order singularly perturbed ordinary differential equations is studied in detail. Numerical tests for the model of a walking mobile robot with stiff contact forces between legs and ground show that the computation time may be reduced by a factor up to 10 using the proposed quasistatic approximation.</description><identifier>ISSN: 0168-9274</identifier><identifier>EISSN: 1873-5460</identifier><identifier>DOI: 10.1016/j.apnum.2012.06.030</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Approximation ; Computation ; Differential equations ; High frequencies ; Mass-lumping ; Mathematical models ; Multibody systems ; Quasistatic approximation ; Robots ; Stiff ODEs ; Walking</subject><ispartof>Applied numerical mathematics, 2012-10, Vol.62 (10), p.1579-1590</ispartof><rights>2012 IMACS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-e5a8048e08176b7a1123f3d7f0f4f67eb8911b132f90b6ba794d4e871396942a3</citedby><cites>FETCH-LOGICAL-c336t-e5a8048e08176b7a1123f3d7f0f4f67eb8911b132f90b6ba794d4e871396942a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168927412001195$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Weber, Steffen</creatorcontrib><creatorcontrib>Arnold, Martin</creatorcontrib><creatorcontrib>Valášek, Michael</creatorcontrib><title>Quasistatic approximations for stiff second order differential equations</title><title>Applied numerical mathematics</title><description>Stiff terms in second order ordinary differential equations may cause large computation time due to high frequency oscillations. Quasistatic approximations eliminate these high frequency solution components in the dynamical simulation of multibody systems by neglecting inertia forces. In the present paper, we study the approximation error of this approach using classical results from singular perturbation theory. The transformation of the linearly implicit second order model equations from multibody dynamics to the canonical (semi-)explicit form of first order singularly perturbed ordinary differential equations is studied in detail. Numerical tests for the model of a walking mobile robot with stiff contact forces between legs and ground show that the computation time may be reduced by a factor up to 10 using the proposed quasistatic approximation.</description><subject>Approximation</subject><subject>Computation</subject><subject>Differential equations</subject><subject>High frequencies</subject><subject>Mass-lumping</subject><subject>Mathematical models</subject><subject>Multibody systems</subject><subject>Quasistatic approximation</subject><subject>Robots</subject><subject>Stiff ODEs</subject><subject>Walking</subject><issn>0168-9274</issn><issn>1873-5460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Ai89emmdNGmSHjzI4hcsiKDnkKYTyNJtu0kr-u_NWs-ewoTnHeZ9CLmmUFCg4nZXmLGf90UJtCxAFMDghKyokiyvuIBTskqUyutS8nNyEeMOAKqKw4o8v80m-jiZydvMjGMYvvw-DUMfMzeELE7euSyiHfo2G0KLIWvTDwbsJ2-6DA_zQl-SM2e6iFd_75p8PD68b57z7evTy-Z-m1vGxJRjZRRwhaCoFI00lJbMsVY6cNwJiY2qKW0oK10NjWiMrHnLUUnKalHz0rA1uVn2plMPM8ZJ73202HWmx2GOmorEloqn7mvCFtSGIcaATo8hlQvfmoI-etM7_etNH71pEDp5S6m7JYWpxafHoKP12FtsfUA76Xbw_-Z_AJAWd_w</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Weber, Steffen</creator><creator>Arnold, Martin</creator><creator>Valášek, Michael</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201210</creationdate><title>Quasistatic approximations for stiff second order differential equations</title><author>Weber, Steffen ; Arnold, Martin ; Valášek, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-e5a8048e08176b7a1123f3d7f0f4f67eb8911b132f90b6ba794d4e871396942a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation</topic><topic>Computation</topic><topic>Differential equations</topic><topic>High frequencies</topic><topic>Mass-lumping</topic><topic>Mathematical models</topic><topic>Multibody systems</topic><topic>Quasistatic approximation</topic><topic>Robots</topic><topic>Stiff ODEs</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, Steffen</creatorcontrib><creatorcontrib>Arnold, Martin</creatorcontrib><creatorcontrib>Valášek, Michael</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied numerical mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, Steffen</au><au>Arnold, Martin</au><au>Valášek, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasistatic approximations for stiff second order differential equations</atitle><jtitle>Applied numerical mathematics</jtitle><date>2012-10</date><risdate>2012</risdate><volume>62</volume><issue>10</issue><spage>1579</spage><epage>1590</epage><pages>1579-1590</pages><issn>0168-9274</issn><eissn>1873-5460</eissn><abstract>Stiff terms in second order ordinary differential equations may cause large computation time due to high frequency oscillations. Quasistatic approximations eliminate these high frequency solution components in the dynamical simulation of multibody systems by neglecting inertia forces. In the present paper, we study the approximation error of this approach using classical results from singular perturbation theory. The transformation of the linearly implicit second order model equations from multibody dynamics to the canonical (semi-)explicit form of first order singularly perturbed ordinary differential equations is studied in detail. Numerical tests for the model of a walking mobile robot with stiff contact forces between legs and ground show that the computation time may be reduced by a factor up to 10 using the proposed quasistatic approximation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apnum.2012.06.030</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9274 |
ispartof | Applied numerical mathematics, 2012-10, Vol.62 (10), p.1579-1590 |
issn | 0168-9274 1873-5460 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671328487 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Approximation Computation Differential equations High frequencies Mass-lumping Mathematical models Multibody systems Quasistatic approximation Robots Stiff ODEs Walking |
title | Quasistatic approximations for stiff second order differential equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasistatic%20approximations%20for%20stiff%20second%20order%20differential%20equations&rft.jtitle=Applied%20numerical%20mathematics&rft.au=Weber,%20Steffen&rft.date=2012-10&rft.volume=62&rft.issue=10&rft.spage=1579&rft.epage=1590&rft.pages=1579-1590&rft.issn=0168-9274&rft.eissn=1873-5460&rft_id=info:doi/10.1016/j.apnum.2012.06.030&rft_dat=%3Cproquest_cross%3E1671328487%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671328487&rft_id=info:pmid/&rft_els_id=S0168927412001195&rfr_iscdi=true |